English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

SERS技术在疾病诊断和生物分析中的应用

邵锋, 陈坤, 罗志辉, 王艳君, 陆冬莲, 韩鹤友*   

  1. 农业微生物学国家重点实验室 华中农业大学理学院 武汉 430070
  • 收稿日期:2012-04-01 修回日期:2012-09-01 出版日期:2012-12-24 发布日期:2012-12-11
  • 通讯作者: 韩鹤友 E-mail:hyhan@mail.hzan.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20975042, 21175051)和湖北省创新团队自然科学基金项目(No.2011CDA115)资助

Application of SERS Techniques in Diagnosis and Bioassay

Shao Feng, Chen Kun, Luo Zhihui, Wang Yanjun, Lu Donglian, Han Heyou*   

  1. State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
  • Received:2012-04-01 Revised:2012-09-01 Online:2012-12-24 Published:2012-12-11
表面增强拉曼散射(surface-enhanced Raman scattering, SERS)技术以其独特的谱带窄、灵敏度高、抗光漂白、原位和无损等优势,在疾病诊断和生物分析领域得到了越来越广泛的应用。本文介绍了近几年来应用于生物大分子、病原微生物、细胞和活体检测分析中的最新SERS技术,并分别从标记与非标记的角度对其进行了阐述,总结了SERS标记检测生物大分子的基本识别模式,简述了检测低浓度病原微生物的SERS技术,着重评述了SERS检测技术在细胞和活体研究中的应用,并对基于SERS的疾病诊断和生物分析技术的发展趋势进行了初步展望。
Surface-enhanced Raman scattering (SERS) technique has experienced unprecedented growth in recent years, driven in large part by its numerous merits including sharp bandwidth, high sensitivity, anti-photobleaching as well as the ability of in-situ and noninvasive analysis for diagnosis and bioassay. Recent advances in SERS-based detection and analysis techniques toward the targets of biomacromolecules, pathogenic microorganisms, cells and living organisms, with an emphasis on labeled or label-free techniques are discussed in the review. General methods are summaried in basic recognition modes for different objects in SERS detection. Details are listed to highlight the strategies to increase sensitivity in the detection of pathogenic microorganisms. We also provide insights into the latest applications of SERS techniques in vivo and present the prospects of SERS techniques in the last part of the article. Contents
1 Introduction
2 Detection of biomacromolecules based on SERS
2.1 Detection of biomacromolecules based on labeled SERS techniques
2.2 Detection of biomacromolecules based on label-free SERS techniques
3 Detection of pathogenic microoganisms based on SERS
3.1 Detection of pathogenic microoganisms based on labeled SERS techniques
3.2 Detection of pathogenic microoganisms based on label-free SERS techniques
4 SERS techniques in cell study
4.1 SERS techniques in direct cell study
4.2 SERS techniques in indirect cell study
5 In vivo detection based on SERS
6 Conclusions and prospects

中图分类号: 

()
[1] Jemal A, Bray F, Center M M, Ferlay J, Ward E, Forman D. CA: Cancer J. Clin., 2011, 61(2): 69-90
[2] Borkin M, Gajos K, Peters A, Mitsouras D, Melchionna S, Rybicki F, Feldman C, Pfister H. IEEE T. Vis. Comput. Gr., 2011, 17(12): 2479-2488
[3] Huang W, Eshleman S H, Toma J, Fransen S, Stawiski E, Paxinos E E, Whitcomb J M, Young A M, Donnell D, Mmiro F. J. Virol., 2007, 81(15): 7885-7893
[4] Raman C V, Krishnan K. Nature, 1928, 121(3048): 501-502
[5] Jacek L, Philip N R. Adsorption of Molecules at Metal Electrodes. 1st ed. NY: Wiley-VCH, 1992. 285
[6] Fleischmann M, Hendra P, McQuillan A. Chem. Phys. Lett., 1974, 26(2): 163-166
[7] Jeanmaire D L, van Duyne R P. J. Electroanal. Chem. Interfa. Electrochem., 1977, 84(1): 1-20
[8] Albrecht M G, Creighton J A. J. Am. Chem. Soc., 1977, 99(15): 5215-5217
[9] Dieringer J A, Robert B, Lettan I, Scheidt K A, van Duyne R P. J. Am. Chem. Soc., 2007, 129(51): 16249-16256
[10] Michaels A M, Nirmal M, Brus L. J. Am. Chem. Soc., 1999, 121(43): 9932-9939
[11] Nie S, Emory S R. Science, 1997, 275(5303): 1102-1106
[12] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S. Phys. Rev. Lett., 1997, 78(9): 1667-1670
[13] Porter M D, Lipert R J, Siperko L M, Wang G, Narayanan R. Chem. Soc. Rev., 2008, 37(5): 1001-1011
[14] Kneipp J, Kneipp H, Wittig B, Kneipp K. Nanomed. Nanotechnol., 2010, 6(2): 214-226
[15] Kho K W, Fu C Y, Dinish U S, Olivo M. J. Biophotonics, 2011, 4(10): 667-684
[16] Alvarez-Puebla R A, Liz-Marzán L M. Small, 2010, 6(5): 604-610
[17] Cao Y C, Jin R, Mirkin C A. Science, 2002, 297(5586): 1536-1540
[18] Allain L R, Vo-Dinh T. Anal. Chim. Acta, 2002, 469(1): 149-154
[19] Podstawka E, Ozaki Y, Proniewicz L M. Applied Spectroscopy, 2004, 58(5): 570-580
[20] Han X X, Zhao B, Ozaki Y. Anal. Bioanal. Chem., 2009, 394(7): 1719-1727
[21] Bizzarri A R, Cannistraro S. Nanomed. Nanotechnol., 2007, 3(4): 306-310
[22] Wang Y, Wei H, Li B, Ren W, Guo S, Dong S, Wang E. Chem. Commun., 2007, (48): 5220-5222
[23] Chen J W, Liu X P, Feng K J, Liang Y, Jiang J H, Shen G L, Yu R Q. Biosens. Bioelectron., 2008, 24(1): 66-71
[24] Zhang L, Xu J J, Mi L, Gong H, Jiang S Y, Yu Q M. Biosens. Bioelectron., 2012, 31(1): 130-136
[25] Feng S, Chen R, Lin J, Pan J, Wu Y, Li Y, Chen J, Zeng H. Biosens. Bioelectron., 2011, 26(7): 3167-3174
[26] Stuart D A, Yuen J M, Shah N, Lyandres O, Yonzon C R, Glucksberg M R, Walsh J T, van Duyne R P. Anal. Chem., 2006, 78(20): 7211-7215
[27] Schmidt H, Ha N B, Pfannkuche J, Amann H, Kronfeldt H D, Kowalewska G. Mar. Pollut. Bull., 2004, 49(3): 229-234
[28] 葛明(Ge M), 崔颜(Cui Y), 顾仁敖(Gu R A). 光谱学与光谱分析(Spectroscopy and Spectral Analysis), 2008, 28(1): 110-116
[29] Rohr T E, Cotton T, Fan N, Tarcha P J. Anal. Biochem., 1989, 182(2): 388-398
[30] Dou X, Takama T, Yamaguchi Y, Yamamoto H, Ozaki Y. Anal. Chem., 1997, 69(8): 1492-1495
[31] Ni J, Lipert R J, Dawson G B, Porter M D. Anal. Chem., 1999, 71(21): 4903-4908
[32] Grubisha D S, Lipert R J, Park H Y, Driskell J, Porter M D. Anal. Chem., 2003, 75(21): 5936-5943
[33] Driskell J D, Uhlenkamp J M, Lipert R J, Porter M D. Anal. Chem., 2007, 79(11): 4141-4148
[34] Wang G, Park H Y, Lipert R J, Porter M D. Anal. Chem., 2009, 81(23): 9643-9650
[35] Wang G, Lipert R J, Jain M, Kaur S, Chakraboty S, Torres M P, Batra S K, Brand R E, Porter M D. Anal. Chem., 2011, 83(7): 2554-2561
[36] Chon H, Lee S, Son S W, Oh C H, Choo J. Anal. Chem., 2009, 81(8): 3029-3034
[37] 葛明(Ge M), 鲍芳(Bao F), 姚建林(Yao J L), 孙如(Sun R), 顾仁敖(Gu R A). 化学学报(Acta Chimica Sinica), 2009, 67(20): 2285-2289
[38] Bell S E J, Sirimuthu N M S. Chem. Soc. Rev., 2008, 37(5): 1012-1024
[39] Kim J H, Lee S M, Jun B H, Choi H J, Kim J S, Cho M H, Kim Y K, Jeong D H, Lee Y S. Nanomed-Nanotechnol., 2007, 3(4): 341-341
[40] Wang Z Y, Zong S F, Yang J, Li J, Cui Y P. Biosens. Bioelectron., 2011, 26(6): 2883-2889
[41] Lee S, Chon H, Yoon S Y, Lee E K, Chang S I, Lim D W, Choo J. Nanoscale, 2012, 4(1): 124-129
[42] Cui Y, Ren B, Yao J L, Gu R A, Tian Z Q. J. Raman Spectrosc., 2007, 38(7): 896-902
[43] Chen Y, Zheng X, Chen G, He C, Zhu W, Feng S, Xi G, Chen R, Lan F, Zeng H. Int. J. Nanomed., 2012, 7: 73-82
[44] Stevenson R, Ingram A, Leung H, McMillan D C, Graham D. Analyst, 2009, 134(5): 842-844
[45] El-Said W A, Kim T H, Yea C H, Kim H, Choi J W. J. Nanosci. Nanotechnol., 2011, 11(1): 768-772
[46] 胡娟(Hu J), 张春阳(Zhang C Y). 化学进展(Progress in Chemistry), 2010, 22(8): 1641-1647
[47] Vo-Dinh T, Houck K, Stokes D L. Anal. Chem., 1994, 66(20): 3379-3383
[48] Vo-Dinh T, Allain L R, Stokes D L. J. Raman Spectrosc., 2002, 33(7): 511-516
[49] Culha M, Stokes D L, Allain L R, Vo-Dinh T. Anal. Chem., 2003, 75(22): 6196-6201
[50] Graham D, Smith W E, Linacre A M T, Munro C H, Watson N D, White P C. Anal. Chem., 1997, 69(22): 4703-4707
[51] Faulds K, Barbagallo R P, Keer J T, Smith W E, Graham D. Analyst, 2004, 129(7): 567-568
[52] Monaghan P B, McCarney K M, Ricketts A, Littleford R E, Docherty F, Smith W E, Graham D, Cooper J M. Anal. Chem., 2007, 79(7): 2844-2849
[53] Wabuyele M B, Vo-Dinh T. Anal. Chem., 2005, 77(23): 7810-7815
[54] Mahajan S, Richardson J, Brown T, Bartlett P N. J. Am. Chem. Soc., 2008, 130(46): 15589-15601
[55] Kang T, Yoo S M, Yoon I, Lee S Y, Kim B. Nano Lett., 2010, 10(4): 1189-1193
[56] Chen K, Han H, Luo Z, Wang Y, Wang X. Biosens. Bioelectron., 2012, 34(1): 118-124
[57] Guesdon J L, Ternynck T, Avrameas S. J. Histochem. Cytochem., 1979, 27(8): 1131-1139
[58] Ahern A M, Garrell R L. Langmuir, 1991, 7(2): 254-261
[59] Garrett N L, Vukusic P, Ogrin F, Sirotkin E, Winlove C P, Moger J. J. Biophotonics, 2009, 2(3): 157-166
[60] Galarreta B C, Norton P R, Lagugne-Labarthet F. Langmuir, 2011, 27(4): 1494-1498
[61] Li T, Liu D, Wang Z. Biosens. Bioelectron., 2009, 24(11): 3335-3339
[62] Baldrich E, Restrepo A, O'Sullivan C K. Anal. Chem., 2004, 76(23): 7053-7063
[63] Mairal T, Cengiz Özalp V, Lozano Sánchez P, Mir M, Katakis I, O'Sullivan C K. Anal. Bioanal. Chem., 2008, 390(4): 989-1007
[64] Wang Y, Wei H, Li B, Ren W, Guo S, Dong S, Wang E. Chem. Commun., 2007, 5220-5222
[65] Cho H, Baker B R, Wachsmann-Hogiu S, Pagba C V, Laurence T A, Lane S M, Lee L P, Tok J B H. Nano Lett., 2008, 8(12): 4386-4390
[66] Chen J, Jiang J, Gao X, Liu G, Shen G, Yu R. Chem. A Eur. J., 2008, 14(27): 8374-8382
[67] Huh Y S, Erickson D. Biosens. Bioelectron., 2010, 25(5): 1240-1243
[68] Sassolas A, Blum L J, Leca-Bouvier B D. Biosens. Bioelectron., 2011, 26(9): 3725-3736
[69] Tong L M, Zhu T, Liu Z F. Chem. Soc. Rev., 2010, 40(3): 1296-1304
[70] Stewart S, Fredericks P. Spectrochim. Acta Part A, 1999, 55(7/8): 1641-1660
[71] Kumar G V P, Reddy B A A, Arif M, Kundu T K, Narayana C. J. Phys. Chem. B, 2006, 110(33): 16787-16792
[72] Grabbe E S, Buck R P. J. Am. Chem. Soc., 1989, 111(22): 8362-8366
[73] Xu H, Bjerneld E J, Käll K, Börjesson L. Phys. Rev. Lett., 1999, 83(21): 4357-4360
[74] Etchegoin P, Liem H, Maher R, Cohen L, Brown R, Milton M, Gallop J. Chem. Phys. Lett., 2003, 367(1/2): 223-229
[75] Feng M, Tachikawa H. J. Am. Chem. Soc., 2008, 130(23): 7443-7448
[76] Han X X, Jia H Y, Wang Y F, Lu Z C, Wang C X, Xu W Q, Zhao B, Ozaki Y. Anal. Chem., 2008, 80(8): 2799-2804
[77] Han X X, Huang G G, Zhao B, Ozaki Y. Anal. Chem., 2009, 81(9): 3329-3333
[78] Kneipp K, Kneipp H, Itzkan I, Dasari R R, Feld M S. J. Phys. Conden. Matt., 2002, 14(18): R597-R624
[79] Benevides J, Thomas G Jr. Biochemistry, 1988, 27(10): 3868-3873
[80] Bell S E J, Sirimuthu N M S. J. Am. Chem. Soc., 2006, 128(49): 15580-15581
[81] Lo H C, Hsiung H I, Chattopadhyay S, Han H C, Chen C F, Leu J P, Chen K H, Chen L C. Biosens. Bioelectron., 2011, 26: 2413-2418
[82] Barhoumi A, Halas N J. J. Am. Chem. Soc., 2010, 132 (37): 12792-12793
[83] Driskell J D, Tripp R A. Chem. Commun., 2010, 3298-3300
[84] Driskell J D, Kwarta K M, Lipert R J, Porter M D, Neill J D, Ridpath J F. Anal. Chem., 2005, 77(19): 6147-6154
[85] Guven B, Basaran-Akgul N , Temur E, Tamer U, Boyaci I H. Analyst, 2011, 136(4): 740-748
[86] Tay L L, Huang P J, Tanha J, Ryan S, Wu X, Hulse J, Chau L K. Chem. Commun., 2012, 1024-1026
[87] Luo Z, Fu T, Chen K, Han H, Zou M. Microchimica Acta, 2011, 175(1): 55-61
[88] Luo Z, Chen K, Lu D, Han H, Zou M. Microchimica Acta, 2011, 173(1): 149-156
[89] Chen K, Han H, Luo Z. Analyst, 2012, 137(5): 1259-1264
[90] Grow A E, Wood L L, Claycomb J L, Thompson P A. J. Microbiol. Meth., 2003, 53(2): 221-233
[91] Schuster K, Urlaub E, Gapes J. J. Microbiol. Meth., 2000, 42(1): 29-38
[92] Fan C, Hu Z, Riley L K, Purdy G A, Mustapha A, Lin M. J. Food Sci., 2010, 75(5): M302-M307
[93] Knauer M, Ivleva N P, Liu X, Niessner R, Haisch C. Anal. Chem., 2010, 82(7): 2766-2772
[94] Liu T Y, Tsai K T, Wang H H, Chen Y, Chen Y H, Chao Y C, Chang H H, Lin C H, Wang J K, Wang Y L. Nat. Commun., 2011, 2: 538
[95] 崔颜(Cui Y), 任斌(Ren B), 田中群(Tian Z Q). 东南大学学报(医学版)(Journal of Southeast University (Medical Science Edition)), 2011, 30(1): 254-262
[96] Efrima S, Bronk B V, Czege J. Proc. SPIE, 1999, 3602: 164-171
[97] Kneipp K, Haka A S, Kneipp H, Badizadegan K, Yoshizawa N, Boone C, Shafer-Peltier K E, Motz J T, Dasari R R, Feld M S. Appl. Spectrosc., 2002, 56(2): 150-154
[98] Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K. Nano Lett., 2006, 6(10): 2225-2231
[99] Vitol E A, Orynbayeva Z, Bouchard M J, Azizkhan-Clifford J, Friedman G, Gogotsi Y. ACS Nano, 2009, 3(11): 3529-3536
[100] Xie W, Wang L, Zhang Y, Su L, Shen A, Tan J, Hu J. Bioconjugate Chem., 2009, 20(4): 768-773
[101] Sujith A, Itoh T, Abe H, Yoshida K, Kiran M S, Biju V, Ishikawa M. Anal. Bioanal. Chem., 2009, 394(7): 1803-1809
[102] Li M, Canniffe D P, Jackson P J, Davison P A, FitzGerald S, Dickman M J, Burgess J G, Hunter C N, Huang W E. ISME J., 2012, 6(4): 875-885
[103] Li M D, Cui Y, Gao M X, Luo J, Ren B, Tian Z Q. Anal. Chem., 2008, 80(13): 5118-5125
[104] Alvarez-Puebla R A, Liz-Marzan L M. Chem. Soc. Rev., 2012, 41(1): 43-51
[105] Wabuyele M B, Yan F, Griffin G D, Vo-Dinh T. Rev. Sci. Instrum., 2005, 76(6): 063710-063717
[106] Sha M Y, Xu H, Natan M J, Cromer R. J. Am. Chem. Soc., 2008, 130(51): 17214-17215
[107] Lu W, Singh A K, Khan S A, Senapati D, Yu H, Ray P C. J. Am. Chem. Soc., 2010, 132(51): 18103-18114
[108] Talley C E, Jusinski L, Hollars C W, Lane S M, Huser T. Anal. Chem., 2004, 76(23): 7064-7068
[109] Kneipp J, Kneipp H, Wittig B, Kneipp K. Nano Lett., 2007, 7(9): 2819-2823
[110] Pallaoro A, Braun G B, Reich N O, Moskovits M. Small, 2010, 6(5): 618-622
[111] Balint S, Rao S, Marro M, Miskovsky P, Petrov D. J. Raman Spectrosc., 2011, 42(6): 1215-1221
[112] Gole A, Agarwal N, Nagaria P, Wyatt M D, Murphy C J. Chem. Commun., 2008, 6140-6142
[113] Jun B H, Noh M S, Kim J, Kim G, Kang H, Kim M S, Seo Y T, Baek J, Kim J H, Park J, Kim S, Kim Y K, Hyeon T, Cho M H, Jeong D H, Lee Y S. Small, 2010, 6(1): 119-125
[114] Olivo M, Lucky S S, Bhuvaneswari R, Dendukuri N. Proc. SPIE, 2011, 8087: 80870T
[115] Cui Y, Zheng X S, Ren B, Wang R, Zhang J, Xia N X, Tian Z Q. Chem. Sci., 2011, 2(8): 1463-1469
[116] Huang H C, Barua S, Sharma G, Dey S K, Rege K. J. Control. Rel., 2011, 155(3): 344-357
[117] Beqa L, Fan Z, Singh A K, Senapati D, Ray P C. ACS Appl. Mater. Interfaces, 2011, 3(9): 3316-3324
[118] Schut T C B, Witjes M, Sterenborg H, Speelman O, Roodenburg J, Marple E, Bruining H, Puppels G. Anal. Chem., 2000, 72(24): 6010-6018
[119] Mo J, Zheng W, Low J J H, Ng J, Ilancheran A, Huang Z. Anal. Chem., 2009, 81(21): 8908-8915
[120] Qian X, Peng X H, Ansari D O, Yin G Q, Chen G Z, Shin D M, Yang L, Young A N, Wang M D, Nie S. Nat. Biotechnol., 2008, 26(1): 83-90
[121] Stone N, Faulds K, Graham K, Matousek P. Anal. Chem., 2010, 82(10): 3969-3973
[122] Yigit M V, Zhu L, Ifediba M A, Zhang Y, Carr K, Moore A, Medarova Z. ACS Nano, 2011, 5(2): 1056-1066
[123] Grant C D, Schwartzberg A, Bogomolni R, Zhang J Z, Talley C E, Huser T R, Lane S M. Abstr. P. Am. Chem. Soc., 2003, 226: U732-U732
[124] Lyandres O, Yuen J M, Shah N C, van Duyne R P, Walsh J T Jr, Glucksberg M R. Diabetes Technol. The., 2008, 10(4): 257-265
[125] Zhang X, Shah N C, van Duyne R P. Vib. Spectrosc., 2006, 42: 2-8
[126] Lyandres O, Shah N C, Yonzon C R, Walsh J T, Glucksberg M R, van Duyne R P. Anal. Chem., 2005, 77(19): 6134-6139
[127] Yonzon C R, Haynes C L, Zhang X, Walsh J T Jr, van Duyne R P. Anal. Chem., 2004, 76(1): 78-85
[128] Shafer-Peltier K E, Haynes C L, Glucksberg M R, Van Duyne R P. J. Am. Chem. Soc., 2003, 125(2): 588-593
[129] Ma K, Yuen J M, Shah N C, Walsh J T Jr, Glucksberg M R, van Duyne R P. Anal. Chem., 2011, 83(23): 9146-9152
[1] 黄大一. 古生物化学中的凝聚态化学反应[J]. 化学进展, 2022, 34(7): 1626-1641.
[2] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[3] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[4] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[5] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[6] 冯迪, 王广华, 唐文来, 杨继全. 微流控阻抗流式细胞仪在单细胞检测中的应用[J]. 化学进展, 2021, 33(4): 555-567.
[7] 吴云雪, 张衡益, 刘育. 偶氮苯衍生物探针在乏氧细胞成像中的应用[J]. 化学进展, 2021, 33(3): 331-340.
[8] 官启潇, 郭和泽, 窦红静. 细胞膜修饰的纳米载体与肿瘤免疫治疗[J]. 化学进展, 2021, 33(10): 1823-1840.
[9] 谢嘉恩, 罗雨珩, 张黔玲, 张平玉. 金属配合物在双光子荧光探针中的应用研究[J]. 化学进展, 2021, 33(1): 111-123.
[10] 郭珊, 周翔. 循环肿瘤细胞体内检测技术及其应用研究[J]. 化学进展, 2021, 33(1): 1-12.
[11] 蔡乐斯, 夏梦婵, 李展平, 张四纯, 张新荣. 二次离子质谱生物成像[J]. 化学进展, 2021, 33(1): 97-110.
[12] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[13] 徐国华, 成凯, 王晨, 李从刚. 生物凝聚态物质的多层次结构表征[J]. 化学进展, 2020, 32(8): 1231-1239.
[14] 王阳, 黄楚森, 贾能勤. 监测细胞微环境及活性分子的有机小分子荧光探针[J]. 化学进展, 2020, 32(2/3): 204-218.
[15] 李悦, 李景虹. 基于CRISPR的生物分析化学技术[J]. 化学进展, 2020, 32(1): 5-13.