English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

稳定氯同位素分析技术及其在有机氯污染物研究中的应用

张原1,2, 祁士华* 1,2   

  1. 1. 中国地质大学(武汉)环境学院 武汉 430074;
    2. 中国地质大学(武汉) 生物地质与环境地质国家重点实验室 武汉 430074
  • 收稿日期:2012-04-01 修回日期:2012-06-01 出版日期:2012-12-24 发布日期:2012-12-11
  • 通讯作者: 祁士华 E-mail:shihuaqi@cug.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 41073070)资助

Techniques of Stable Chlorine Isotope Analysis and Relevant Applications in Research of Organochlorine Pollutants

Zhang Yuan1,2, Qi Shihua* 1,2   

  1. 1. School of Environmental Studies, China University of Geosciences, Wuhan 430074, China;
    2. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
  • Received:2012-04-01 Revised:2012-06-01 Online:2012-12-24 Published:2012-12-11
有机氯污染物是近几十年环境科学持续关注的热点,传统研究以环境化学为主。随着同位素分析技术日趋高效便捷,氯同位素分析技术也开始在有机污染研究中得到更多应用。本文综述了稳定氯同位素分析技术的研究进展,介绍了氯同位素技术在有机污染物研究中的应用现状,并对其研究趋势进行了展望。单体同位素分析技术有助于开展有机氯污染物的同位素相关理论及应用研究;双路-同位素质谱和热电离质谱方法是测试精度较高的两种氯同位素测试方法,但是前处理过程繁杂、样品用量较大,不能满足环境样品中痕量的有机氯污染物分析;在线同位素测试技术提高了分析方法的灵敏度,拓宽了单体氯同位素分析技术在环境有机污染研究中的应用范围,是未来环境有机污染研究的趋势之一, 有待深入研究。目前氯同位素分析主要应用在环境有机污染物的溯源、降解途径的辩识和降解效率的量化等方面,尚需加强相关理论和应用研究。
The novel approach of isotope analysis has been introduced into the research of environmental science. Techniques and applications of stable chlorine isotope analysis are developed to research the source apportionment, transportation and transformation of the organic pollutants. This article reviews the progress of the techniques of stable chlorine isotope analysis and the relevant applications in research of organochlorine pollutants, and tries to reveal the prospects. The compound specific isotope analysis (CSIA) is lately considered as an important technique in study of environmental organic pollution. At present, the dual-inlet isotope ratio mass spectrometer (DI-IRMS) and thermal ionization mass spectrometry (TIMS) are widely used accurate instrumental methods for stable chlorine isotope measurements, but the sensitivity of these instrumental methods may not be capable for some trace analysis of environmental samples. Recent attempts of on-line technique of isotope analysis simplified the procedures of CSIA, and improved the method sensitivity. Up to now the applications of isotope fingerprint and isotope fractionation have been introduced into environmental sciences. Studies show stable chlorine isotope analysis can be an assistant for pollution source apportionment, depicting the environmental process, and quantitatively describing the pollutant degradation efficiency. It is highlighted that the stable chlorine isotope analysis is a potential direction of environmental research of organochlorine pollutants. There are more efforts needed on the mechanism of stable chlorine isotope fractionation and its application for organochlorine pollutants, using CSIA method. Contents
1 Introduction
2 Progress of techniques of stable chlorine isotope analysis
2.1 Concept of compound specific chlorine isotope analysis
2.2 Dual inlet-isotope ratio mass spectrometry and thermo ionization mass spectrometry methods
2.3 Development of on-line methods of stable chlorine isotope analysis
3 Applications of stable chlorine isotope analysis of organochlorine pollutants
3.1 Source apportionment of organochlorine pollution using chlorine isotope analysis
3.2 Applications of stable chlorine isotope fractionation theories on organochlorine pollution
4 Conclusion and outlook

中图分类号: 

()
[1] Stockholm Convention on Persistent Organic Pollutants (POPs), as amended in 2009 (2009-08-26). . http: //chm. pops. int/Portals/0/download. aspx?d=UNEP-POPS-COP-CONVTEXT. En. pdf
[2] Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental Organic Chemistry. 2nd ed. Hoboken: John Wiley & Sons, Inc., 2003. 4-12
[3] Sturchio N C, Clausen J L, Heraty L J, Huang L, Holt B D, Abrajano T A. Environ. Sci. Technol., 1998, 32: 3037-3042
[4] Van Warmerdam E M, Frape S K, Aravena R, Drimmie R J, Flatt H, Cherry J A. Appl. Geochem., 1995, 10: 547-552
[5] Holt B D, Sturchio N C, Abrajano T A, Heraty L J. Anal. Chem., 1997, 69: 2727-2733
[6] Tanaka N, Rye D M. Nature, 1991, 353: 707-707
[7] Jendrzejewski N, Eggenkamp H G M, Coleman M L. Appl. Geochem., 2001, 16: 1021-1031
[8] Wassenaar L I, Koehler G. Anal. Chem., 2004, 76: 6384-6388
[9] Elsner M. J. Environ. Monit., 2010, 12: 2005-2031
[10] Bernstein A, Shouakar-Stash O, Ebert K, Laskov C, Hunkeler D, Jeannottat S, Sakaguchi-Söder K, Laaks J, Jochmann M A, Cretnik S, Jager J, Haderlein S B, Schmidt T C, Aravena R, Elsner M. Anal. Chem., 2011, 83: 7624-7634
[11] Holmstrand H, Andersson P, Gustafsson O. Anal. Chem., 2004, 76: 2336-2342
[12] Xiao Y K, Zhou Y M, Wang Q Z, Wei H Z, Liu W G, Eastoe C J. Chem. Geol., 2002, 182: 655-661
[13] Schmidt T, Zwank L, Elsner M, Berg M, Meckenstock R, Haderlein S. Anal. Bioanal. Chem., 2004, 378: 283-300
[14] Hunkeler D, Meckenstock R U, Lollar B S, Schmidt T, Wilson J T. A Guide for Assessing Biodegradation and Source Identification of Organic Ground Water Contaminants Using Compound Specific Isotope Analysis (Csia) (2008-12). . http: //nepis. epa. gov/Exe/ZyPURL. cgi?Dockey=P1002VAI. txt
[15] Shouakar-Stash O, Drimmie R J, Zhang M, Frape S K. Appl. Geochem., 2006, 21: 766-781
[16] McHugh T, Kuder T, Fiorenza S, Gorder K, Dettenmaier E, Philp P. Environ. Sci. Technol., 2011, 45: 5952-5958
[17] Holmstrand H, Mandalakis M, Zencak Z, Andersson P, Gustafsson O. Chemosphere, 2007, 69: 1533-1539
[18] Hunkeler D, van Breukelen B M, Elsner M. Environ. Sci. Technol., 2009, 43: 6750-6756
[19] Zwank L, Berg M, Elsner M, Schmidt T C, Schwarzenbach R P, Haderlein S B. Environ. Sci. Technol., 2004, 39: 1018-1029
[20] Meckenstock R U, Morasch B, Griebler C, Richnow H H. J. Contam. Hydrol., 2004, 75: 215-255
[21] Long A, Eastoe C J, Kaufmann R S, Martin J G, Wirt L, Finley J B. Geochim. Cosmochim. Acta, 1993, 57: 2907-2912
[22] Eggenkamp H G M. Doctoral Dissertation of Universiteit Utrecht, 1994
[23] Jendrzejewski N, Eggenkamp H G M, Coleman M L. Anal. Chem., 1997, 69: 4259-4266
[24] Ader M, Coleman M L, Doyle S P, Stroud M, Wakelin D. Anal. Chem., 2001, 73: 4946-4950
[25] Xiao Y K, Zhang C G. Int. J. Mass Spectrom. Ion Processes, 1992, 116: 183-192
[26] Magenheim A J, Spivack A J, Volpe C, Ransom B. Geochim. Cosmochim. Acta, 1994, 58: 3117-3121
[27] Numata M, Nakamura N, Koshikawa H, Terashima Y. Anal. Chim. Acta, 2002, 455: 1-9
[28] Xiao Y K, Liu W G. Anal. Lett., 1995, 28: 1295-1304
[29] Rosenbaum J M, Cliff R A, Coleman M L. Anal. Chem., 2000, 72: 2261-2264
[30] Kaufmann R, Long A, Bentley H, Davis S. Nature, 1984, 309: 338-340
[31] Godon A, Jendrzejewski N, Eggenkamp H G M, Banks D A, Ader M, Coleman M L, Pineau F. Chem. Geol., 2004, 207: 1-12
[32] Sharp Z D, Barnes J D, Brearley A J, Chaussidon M, Fischer T P, Kamenetsky V S. Nature, 2007, 446: 1062-1065
[33] Cincinelli A, Pieri F, Zhang Y, Seed M, Jones K C. Environ. Pollut., 2012, 169: 112-127
[34] Teffera Y, Kusmierz J J, Abramson F P. Anal. Chem., 1996, 68: 1888-1894
[35] Van Acker M R M D, Shahar A, Young E D, Coleman M L. Anal. Chem., 2006, 78: 4663-4667
[36] Aeppli C, Holmstrand H, Andersson P, Gustafsson O. Anal. Chem., 2010, 82: 420-426
[37] Jin B, Laskov C, Rolle M, Haderlein S B. Environ. Sci. Technol., 2011, 45: 5279-5286
[38] Sakaguchi-Soder K, Jager J, Grund H, Matthaus F, Schuth C. Rapid Commun. Mass Spectrom., 2007, 21: 3077-3084
[39] Laube J C, Kaiser J, Sturges W T, Bönisch H, Engel A. Science, 2010, 329: 1167-1167
[40] Sturchio N C, Hatzinger P B, Arkins M D, Suh C, Heraty L J. Environ. Sci. Technol., 2003, 37: 3859-3863
[41] Sturchio N C, Böhlke J K, Beloso A D, Streger S H, Heraty L J, Hatzinger P B. Environ. Sci. Technol., 2007, 41: 2796-2802
[42] Drenzek N J, Tarr C H, Eglinton T I, Heraty L J, Sturchio N C, Shiner V J, Reddy C M. Org. Geochem., 2002, 33: 437-444
[43] Reddy C M, Xu L, Drenzek N J, Sturchio N C, Heraty L J, Kimblin C, Butler A. J. Am. Chem. Soc., 2002, 124: 14526-14527
[44] Reddy C M, Drenzek N J, Eglinton T I, Heraty L J, Sturchio N C, Shiner V J. Environ. Sci. Pollut. R., 2002, 9: 183-186
[45] Reddy C M, Heraty L J, Holt B D, Sturchio N C, Eglinton T I, Drenzek N J, Xu L, Lake J L, Maruya K A. Environ. Sci. Technol., 2000, 34: 2866-2870
[46] Huang L, Sturchio N C, Abrajano T Jr, Heraty L J, Holt B D. Org. Geochem., 1999, 30: 777-785
[47] Bartholomew R M, Brown F, Lounsbury M. Can. J. Chem., 1954, 32: 979-983
[48] Hill J W, Fry A. J. Am. Chem. Soc., 1962, 84: 2763-2769
[49] Numata M, Nakamura N, Koshikawa H, Terashima Y. Environ. Sci. Technol., 2002, 36: 4389-4394
[50] Heraty L J, Fuller M E, Huang L, Abrajano T, Sturchio N C. Org. Geochem., 1999, 30: 793-799
[51] Drenzek N J, Eglinton T I, Wirsen C O, Sturchio N C, Heraty L J, Sowers K R, Wu Q, May H D, Reddy C M. Environ. Pollut., 2004, 128: 445-448
[1] 王亚韡, 王莹, 江桂斌. 短链氯化石蜡的分析方法、污染现状与毒性效应[J]. 化学进展, 2017, 29(9): 919-929.
[2] 欧阳洁, 杨国胜, 马玲玲, 罗敏, 徐殿斗. 大气污染物中人工放射性铯-钚-铀同位素示踪技术的发展与应用[J]. 化学进展, 2017, 29(12): 1446-1461.
[3] 朱建新,陈梦君,张付申. 高温自蔓延技术在环境保护领域中的应用*[J]. 化学进展, 2009, 21(0708): 1693-1704.