English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

环境中纳米材料的分离与分析方法

吕继涛, 张淑贞*   

  1. 中国科学院生态环境研究中心 环境化学与生态毒理国家重点实验室 北京 100085
  • 收稿日期:2012-04-01 修回日期:2012-05-01 出版日期:2012-12-24 发布日期:2012-12-11
  • 通讯作者: 张淑贞 E-mail:szzhang@rcees.ac.cn
  • 基金资助:

    国家自然科学基金项目(No.21277154,41023005)和国家重点基础研究发展计划(973)项目(No.2011CB936001)资助

Methods for Separation and Analysis of Nanomaterials in the Environment

L? Jitao, Zhang Shuzhen*   

  1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
  • Received:2012-04-01 Revised:2012-05-01 Online:2012-12-24 Published:2012-12-11
随着纳米科技的发展和纳米材料的广泛应用,进入环境中的纳米材料必将随之增加。由于纳米材料可能对生态环境和人体健康带来潜在的危害,了解环境中纳米材料的浓度水平和行为有助于正确认识和评价纳米材料的环境风险,并做出相应的防治对策。然而,纳米材料所具有的诸多特殊性质直接影响它们的环境行为和生态毒性,因此,环境中纳米材料的分析不仅包括浓度的定量测定,还包括对其组成、粒径和表面电荷等性质的表征,是一项具有挑战性的工作。本文综述了近年来关于环境纳米材料分离、表征及检测的相关手段和方法,重点包括场流分离、色谱分离和电泳分离在纳米材料分离以及显微和谱学技术在纳米材料分析中的应用;提出了一些思考和展望,希望能够增进对环境中纳米材料分离和分析方法的了解,有助于纳米材料环境分析方法的建立和推动纳米材料环境行为和生态毒理研究的进一步规范。
With the rapid development of nanotechnology and the wide application of manufactured nanomaterials, the potential for their release into the environment will increase drastically in the near future. Studies have suggested that the released nanomaterials can cause some potential adverse effects on both ecosystem and human health. Therefore, knowledges of concentration, behavior, and fate of nanomaterials in the environment will help us to accurately evaluate their environmental risks in order to make proper prevention and control countermeasures. However, due to the fact that many properties will influence the behavior and toxicity of nanomaterials in the environment, analysis of nanomaterials includes not only the determination of their concentration but also the identification of their characteristics such as composition, size, surface charge etc., therefore posing a great challenge to accurate analysis of nanomaterials in the environment. This review presents the update methods used for extraction, separation, fractionation and analysis of nanomaterials in the environment, mainly including extraction and preseparation procedures, field flow, chromatographic and electrophoretic methods used for fractionation, and microscopic and spectroscopic techniques applied in characterization and quantification of nanomaterials. It concludes with future research perspectives of these methods, which will hopefully help to establish normative methods and strategies for environmental analysis and improve the ecological risk assessment of nanomaterials in the environment. Contents
1 Introduction
2 Nanomaterials in the environment
3 Sampling and extraction of nanomaterials in the environment
3.1 Prefractionation
3.2 Extract separation
4 Fractionation of nanomaterials in the environment
4.1 Dispersion
4.2 Field flow fractionation
4.3 Chromatographic separation
4.4 Electrophoresis separation
5 Characterization and quantitative analysis of nanomaterials in the environment
5.1 Microscopic tests
5.2 Light-scattering techniques
5.3 Spectroscopic methods
5.4 Quantitative analysis
6 Conclusion and perspectives

中图分类号: 

()
[1] Masciangioli T, Zhang W X. Environ. Sci. Technol., 2003, 37: 102a-108a
[2] 白春礼(Bai C L). 科学通报(Chin. Sci. Bull.), 2001, 46: 89-92
[3] Nel A, Xia T, Madler L, Li N. Science, 2006, 311: 622-627
[4] Bai C L. Science, 2005, 309: 61-63
[5] Wiesner M R, Lowry G V, Alvarez P, Dionysiou D, Biswas P. Environ. Sci. Technol., 2006, 40: 4336-4345
[6] Service R F. Science, 2003, 300: 243-243
[7] Brumfiel G. Nature, 2003, 424: 246-248
[8] Colvin V L. Nat. Biotechnol., 2003, 21: 1166-1170
[9] Lowry G V, Casman E A. Nato. Sci. Peace Secur., 2009, 125-137
[10] Klaine S J, Alvarez P J J, Batley G E, Fernandes T F, Handy R D, Lyon D Y, Mahendra S, McLaughlin M J, Lead J R. Environ. Toxicol. Chem., 2008, 27: 1825-1851
[11] Navarro E, Baun A, Behra R, Hartmann N B, Filser J, Miao A J, Quigg A, Santschi P H, Sigg L. Ecotoxicology, 2008, 17: 372-386
[12] Singh N, Manshian B, Jenkins G J S, Griffiths S M, Williams P M, Maffeis T G G, Wright C J, Doak S H. Biomaterials, 2009, 30: 3891-3914
[13] Zhao Y L, Xing G M, Chai Z F. Nat. Nanotechnol., 2008, 3: 191-192
[14] Li M, Zhu L Z, Lin D H. Environ. Sci. Technol., 2011, 45: 1977-1983
[15] Liu W, Wu Y A, Wang C, Li H C, Wang T, Liao C Y, Cui L, Zhou Q F, Yan B, Jiang G B. Nanotoxicology, 2010, 4: 319-330
[16] Fischer H C, Chan W C W. Curr. Opin. Biotech., 2007, 18: 565-571
[17] Hassellov M, Readman J W, Ranville J F, Tiede K. Ecotoxicology, 2008, 17: 344-361
[18] Simonet B M, Valcarcel M. Anal. Bioanal. Chem., 2009, 393: 17-21
[19] Barnard A S. Nat. Mater., 2006, 5: 245-248
[20] Benna T M, Westerhoffa P, Herckesb P. Environ. Pollut., 2011, 159: 1334-1342
[21] Thomas K, Sayre P. Toxicol. Sci., 2005, 87: 316-321
[22] Auffan M, Rose J, Bottero J Y, Lowry G V, Jolivet J P, Wiesner M R. Nat. Nanotechnol., 2009, 4: 634-641
[23] Becker L. Science, 1994, 265: 1644-1644
[24] Murr L E, Esquivel E V, Bang J J, de la Rosa G, Gardea-Torresdey J L. Water Res., 2004, 38: 4282-4296
[25] Nowack B, Bucheli T D. Environ. Pollut., 2007, 150: 5-22
[26] Hochella M F. Geochim. Cosmochim. Acta, 2002, 66: 735-743
[27] Wigginton N S, Haus K L, Hochella M F. J. Environ. Monitor, 2007, 9: 1306-1316
[28] Howard A G. J. Environ. Monitor, 2010, 12: 135-142
[29] Franklin N M, Rogers N J, Apte S C, Batley G E, Gadd G E, Casey P S. Environ. Sci. Technol., 2007, 41: 8484-8490
[30] Gueguen C, Belin C, Dominik J. Water Res., 2002, 36: 1677-1684
[31] 马骁轩(Ma X X), 冉勇(Ran Y). 水资源保护(Water Resources Protection), 2009, 25: 57-65
[32] Tang Z Y, Wu L H, Luo Y M, Christie P. Environ. Geochem. Health., 2009, 31: 1-10
[33] Keller A A, Wang H T, Zhou D X, Lenihan H S, Cherr G, Cardinale B J, Miller R, Ji Z X. Environ. Sci. Technol., 2010, 44: 1962-1967
[34] Li X, Lenhart J J, Walker H W. Langmuir, 2010, 26: 16690-16698
[35] Bian S W, Mudunkotuwa I A, Rupasinghe T, Grassian V H. Langmuir, 2011, 27: 6059-6068
[36] Perez S, Farre M, Barcelo D. Trac-Trend Anal. Chem., 2009, 28: 820-832
[37] Buseck P R. Earth Planet. Sci. Lett., 2002, 2003: 781-792
[38] Liu J F, Liu R, Yin Y G, Jiang G B. Chem. Commun., 2009, 1514-1516
[39] Liu J F, Chao J B, Liu R, Tan Z Q, Yin Y G, Wu Y, Jiang G B. Anal. Chem., 2009, 81: 6496-6502
[40] Huang H L, Wang H P, Wei G T, Sun I W, Huang J F, Yang Y W. Environ. Sci. Technol., 2006, 40: 4761-4764
[41] Zhang Y, Chen Y S, Westerhoff P, Crittenden J. Water Res., 2009, 43: 4249-4257
[42] Wang P, Shi Q H, Liang H J, Steuerman D W, Stucky G D, Keller A A. Small, 2008, 4: 2166-2170
[43] Lewinski N, Colvin V, Drezek R. Small, 2008, 4: 26-49
[44] Giddings J C. Separation Sci., 1966, 1: 123-125
[45] 张学军(Zhang X J), 左春柽(Zuo C C), 文伟力(Wen W L). 精细化工(Fine Chemicals), 2005, 22: 773-787
[46] Moon M H, Kim H J, Kwon S Y, Lee S J, Chang Y S, Lim H. Anal. Chem., 2004, 76: 3236-3243
[47] Thompson G H, Myers M N, Giddings J C. Anal. Chem., 1969, 41: 1219-1222
[48] Giddings J C, Yang F J F, Myers M N. Anal. Chem., 1974, 46: 1917-1924
[49] Latham A H, Williams M E. Anal. Chem., 2005, 77: 5055-5062
[50] Baalousha M, Kammer F V D, Motelica-Heino M, Baborowski M, Hofmeister C, Coustumer P L. Environ. Sci. Technol., 2006, 40: 2156-2162
[51] Jackson B P, Ranville J F, Neal A L. Anal. Chem., 2005, 77: 1393-1397
[52] Baalousha M, Lead J R. Environ. Sci. Technol., 2007, 41: 1111-1117
[53] Baalousha M, Lead J R. Sci. Total Environ., 2007, 386: 93-102
[54] Gimbert L J, Hamon R E, Casey P S, Worsfold P J. Environ. Chem., 2007, 4: 8-10
[55] Tadjiki S, Assemi S, Deering C E, Veranth J M, Miller J D. J. Nanopart. Res., 2009, 11: 981-988
[56] Kim S T, Kang D Y, Lee S H, Kim W S, Lee J T, Cho H S, Kim S H. J. Liq. Chromatogr. Relat. Technol., 2007, 30: 2533-2544
[57] Contado C, Argazzi R. J. Chromatogr. A, 2009, 1216: 9088-9098
[58] Farre M, Sanchis J, Barcelo D. Trac-Trend Anal. Chem., 2011, 30: 517-527
[59] Wei G T, Liu F K. J. Chromatogr. A, 1999, 836: 253-260
[60] Helfrich A, Bruchert W, Bettmer J. J. Anal. Atom. Spectrom., 2006, 21: 431-434
[61] Krueger K M, Al-Somali A M, Falkner J C, Colvin V L. Anal. Chem., 2005, 77: 3511-3515
[62] Ziegler K J, Schmidt D J, Rauwald U, Shah K N, Flor E L, Hauge R H, Smalley R E. Nano Lett., 2005, 5: 2355-2359
[63] Blom M T, Chmela E, Oosterbroek R E, Tijssen R, van den Berg A. Anal. Chem., 2003, 75: 6761-6768
[64] Williams A, Varela E, Meehan E, Tribe K. Int. J. Pharm., 2002, 242: 295-299
[65] Isaacson C W, Kleber M, Field J A. Environ. Sci. Technol., 2009, 43: 6463-6474
[66] Chao T C, Song G X, Hansmeier N, Westerhoff P, Herckes P, Halden R U. Anal. Chem., 2011, 83: 1777-1783
[67] Heymann D, Chibante L P F, Smalley R E. J. Chromatogr. A, 1995, 689: 157-163
[68] Pyell U. Electrophoresis, 2010, 31: 814-831
[69] Liu F K, Ko F H, Huang P W, Wu C H, Chu T C. J. Chromatogr. A, 2005, 1062: 139-145
[70] Liu F K, Wei G T. Anal. Chim. Acta, 2004, 510: 77-83
[71] Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic B M, Lu J J, Wanzer M B, Woloschak G E, Smalle J A. Nano Lett., 2010, 10: 2296-2302
[72] Wild E, Jones K C. Environ. Sci. Technol., 2009, 43: 5290-5294
[73] Thurn K T, Paunesku T, Wu A G, Brown E M B, Lai B, Vogt S, Maser J, Aslam M, Dravid V, Bergan R, Woloschak G E. Small, 2009, 5: 1318-1325
[74] Qu Y, Li W, Zhou Y L, Liu X F, Zhang L L, Wang L M, Li Y F, Iida A, Tang Z Y, Zhao Y L, Chai Z F, Chen C Y. Nano Lett., 2011, 11: 3174-3183
[75] Tiede K, Tear S P, David H, Boxall A B A. Water Res., 2009, 43: 3335-3343
[76] Burleson D J, Driessen M D, Penn R L. J. Environ. Sci. Heal. A, 2004, 39: 2707-2753
[77] Zhou D X, Keller A A. Water Res., 2010, 44: 2948-2956
[78] Filipe V, Hawe A, Jiskoot W. Pharm. Res-Dordr., 2010, 27: 796-810
[79] Aryal S, Bahadur K C R, Bhattarai N, Kim C K, Kim H Y. J. Colloid Interf. Sci., 2006, 299: 189-195
[80] Link S, El-Sayed M A. J. Phys. Chem. B, 1999, 103: 8410-8426
[81] Wang F, Banerjee D, Liu Y S, Chen X Y, Liu X G. Analyst, 2010, 135: 1839-1854
[82] Kim J W, Son J A, Yun J I, Jung E C, Park S H, Choi J G. Chem. Phys. Lett., 2008, 462: 75-77
[83] Latkoczy C, Kagi R, Fierz M, Ritzmann M, Gunther D, Boller M. J. Environ. Monitor., 2010, 12: 1422-1429
[84] Walther C, Buchner S, Filella M, Chanudet V. J. Colloid Interf. Sci., 2006, 301: 532-537
[85] 李伟(Li W), 罗磊(Luo L), 张淑贞(Zhang S Z). 化学进展(Prog. Chem.), 2011, 23: 2576-2587
[86] Yang K, Lin D H, Xing B S. Langmuir, 2009, 25: 3571-3576
[87] Jiang W, Yang K, Vachet R W, Xing B S. Langmuir, 2010, 26: 18071-18077
[88] Kerr L L, Li X N, Canepa M, Sommer A J. Thin Solid Films, 2007, 515: 5282-5286
[89] Birkefeld A, Schulin R, Nowack B. Environ. Sci. Technol., 2005, 39: 3302-3307
[90] Lin S J, Reppert J, Hu Q, Hudson J S, Reid M L, Ratnikova T A, Rao A M, Luo H, Ke P C. Small, 2009, 5: 1128-1132
[91] Levard C, Reinsch B C, Michel F M, Oumahi C, Lowry G V, Brown G E. Environ. Sci. Technol., 2011, 45: 5260-5266
[92] Waychunas G A, Kim C S, Banfield J F. J. Nanopart. Res., 2005, 7: 409-433
[93] Hesterberg D, Liu Y T. Environ. Sci. Technol., 2011, 45: 6283-6289
[94] Ha J Y, Trainor T P, Farges F, Brown G E. Langmuir, 2009, 25: 5574-5585
[95] Scheckel K G, Luxton T P, El Badawy A M, Impellitteri C A, Tolaymat T M. Environ. Sci. Technol., 2010, 44: 1307-1312
[96] Domingos R F, Baalousha M A, Ju-Nam Y, Reid M M, Tufenkji N, Lead J R, Leppard G G, Wilkinson K J. Environ. Sci. Technol., 2009, 43: 7277-7284
[97] Scheffer A, Engelhard C, Sperling M, Buscher W. Anal. Bioanal. Chem., 2008, 390: 249-252
[98] Lyven B, Hassellov M, Turner D R, Haraldsson C, Andersson K. Geochim. Cosmochim. Acta, 2003, 67: 3791-3802
[99] Tiede K, Boxall A B A, Wang X M, Gore D, Tiede D, Baxter M, David H, Tear S P, Lewis J. J. Anal. Atom. Spectrom., 2010, 25: 1149-1154
[100] Tiede K, Boxall A B A, Tiede D, Tear S P, David H, Lewis J. J. Anal. Atom. Spectrom., 2009, 24: 964-972
[101] Bouby M, Geckeis H, Manh T N, Yun J I, Dardenne K, Schafer T, Walther C, Kim J I. J. Chromatogr. A, 2004, 1040: 97-104
[102] Hyung H, Fortner J D, Hughes J B, Kim J H. Environ. Sci. Technol., 2007, 41: 179-184
[103] Chen K L, Elimelech M. Langmuir, 2006, 22: 10994-11001
[104] Isaacson C W, Usenko C Y, Tanguay R L, Field J A. Anal. Chem., 2007, 79: 9091-9097
[105] Zhu H, Han J, Xiao J Q, Jin Y. J. Environ. Monitor., 2008, 10: 713-717
[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 薛宗涵, 马楠, 王炜罡. 大气中的单环芳香族硝基化合物[J]. 化学进展, 2022, 34(9): 2094-2107.
[3] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[4] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[5] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[6] 钟佳利, 王炜罡, 彭超, 马楠, 吴志军, 葛茂发. 大气气溶胶吸湿性及其对环境的影响[J]. 化学进展, 2022, 34(4): 801-814.
[7] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[8] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[9] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[10] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[11] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[12] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[13] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[14] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[15] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.