English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

铀的复合吸附材料

张文, 叶钢, 陈靖*   

  1. 清华大学核能与新能源技术研究院 北京 100084
  • 收稿日期:2012-05-01 修回日期:2012-09-01 出版日期:2012-12-24 发布日期:2012-12-11
  • 通讯作者: 陈靖 E-mail:jingxia@tsinghua.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.51103079)资助

Composite Materials for Uranium Adsorption

Zhang Wen, Ye Gang, Chen Jing*   

  1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
  • Received:2012-05-01 Revised:2012-09-01 Online:2012-12-24 Published:2012-12-11
铀是重要核燃料资源,也是放射性废液中主要的污染元素之一。铀的吸附涉及到溶液中铀的提取、含铀废水的处理和铀元素化学分析的预富集等。本文从有机官能团化学键合修饰基体的复合材料出发,从基体和有机官能团两方面对溶液中的铀的吸附行为进行了综述,分析了各种官能团所适用的水相pH值、对铀的吸附量和选择性。含有机磷类官能团的复合材料具有pH适用范围广、吸附量和选择性较好的优点,是一种具有良好发展前景的铀复合吸附剂。
Uranium is a very important nuclear fuel resource as well as one of main radioactive elements in the radioactive contamination liquid waste. Adsorption of uranium involves the extraction of uranium from all solutions and the treatment of uranium-contaminated liquid waste and the preconcentration of uranium for chemical analysis. In the present paper, the adsorption behavior of uranium by different composite adsorbents, whose matrixes were chemically modified with organo-functional groups, is reviewed. The applicable aqueous pH, the adsorption capacity and selectivity to uranium are discussed for different functional groups. The organophosphorus functional group-bearing composite material for uranium adsorption is promising because organophosphorus functional group showed the advantages of wide range of pH, higher adsorption capacity and better selectivity. Contents
1 Introduction
2 Matrixes of composite materials
3 Organo-functional group of composite materials
3.1 Only oxygen coordinated to uranyl ion
3.2 Ligands containing nitrogen coordinated
4 Conclusion and prospects

中图分类号: 

()
[1] 王世虎(Wang S H), 朱欣然(Zhu X R), 袁博(Yuan B). 国土资源情报(Land and Resources Information), 2010, 8: 24-28
[2] 闫强(Yan Q), 王安建(Wang A J), 王高尚(Wang G S), 陈其慎(Chen Q S), 于汶加(Yu W J), 李瑞萍(Li R P). 中国矿业(China Mining Magazine), 2011, (2): 1-5
[3] Schneider P, Neitzel P L, Osenbruck K, Noubacteb C, Merkel B, Hurst S. Acta Hydroch. Hydrob., 2001, 29: 129-138
[4] Carvalho F P, Oliveira J M, Lopes I, Batista A. J. Environ. Radioact., 2007, 98: 298-314
[5] 邓锦勋(Deng J X), 孟健(Meng J), 程威(Cheng W), 李红(Li H), 李建华(Li J H). 铀矿冶(Uranium Mining and Metallurgy), 2011, (2): 100-103
[6] Hussein A E M. J. Radioanal. Nucl. Chem., 2011, 289: 321-329
[7] Bozkurt S, Molu Z, Cavas L, Merdivan M. J. Radioanal. Nucl. Chem., 2011, 288: 867-874
[8] Yamakawa I, Traina S J. Abstracts of Papers of the American Chemical Society, 2001, 222: U493-U493
[9] Carpenter D J, Johnson K O. Waste Management '90: 'Working Towards a Cleaner Environment’. Waste Processing, Transportation, Storage and Disposal, Technical Programs and Public Education. Proceedings of the Symposium, Arizona: Amer Nuclear Society, 1990. 539-546
[10] Uchiyama G, Asakura T, Hotoku S, Mineo H, Kamei K, Watanabe M, Fujine S. J. Radioanal. Nucl. Chem., 2000, 246: 683-688
[11] Zhong X, Wu Y. J. Radioanal. Nucl. Chem., 2012, 292: 355-360
[12] Doyle F M. International Journal of Mineral Processing, 2003, 72: 387-399
[13] Sastre A M, Kumar A, Shukla J P, Singh R K. Separation and Purification Methods, 1998, 27: 213-298
[14] Zhirnov Y P, Zhikharev M A, Savchenko R K. At. Energ., 1996, 81: 529-530
[15] Khalifa M E. Sep. Sci. Technol., 1998, 33: 2123-2141
[16] Aydin F A, Soylak M. Talanta, 2007, 72: 187-192
[17] Hoshi H, Wei Y Z, Kumagai M, Asakura T, Morita Y. J. Alloys Compd., 2004, 374: 451-455
[18] Ansari S A, Pathak P N, Husain M, Prasad A K, Parmar V S, Manchanda V K. Talanta, 2006, 68: 1273-1280
[19] Singh B N, Maiti B. Talanta, 2006, 69: 393-396
[20] Seyhan S, Merdivan M, Demirel N. J. Hazard. Mater., 2008, 152: 79-84
[21] Morsy A M A, Hussein A E M. J. Radioanal. Nucl. Chem., 2011, 288: 341-346
[22] 李兴亮(Li X L), 宋强(Song Q), 刘碧君(Liu B J), 刘春霞(Liu C X), 王航(Wang H), 耿俊霞(Geng J X), 陈震(Chen Z), 刘宁(Liu N), 李首建(Li S J). 化学进展(Progress in Chemistry), 2011, 23(7): 1446-1453
[23] 陈梦君(Chen M J), 崔春龙(Cui C L), 卢喜瑞(Lu X R), 段涛(Duan T), 杨岩凯(Yang Y K), 张东(Zhang D). 原子能科学技术(Atomic Energy Science and Technology), 2011, 1: 14-19
[24] Morss L R. The Chemistry of the Actinide and Transactinide Elements. 3rd ed. Berlin: Springer, 2006.590-591
[25] Pearson R G. J. Am. Chem. Soc., 1963, 85: 3533-3539
[26] Zhao Y, Liu C, Feng M, Chen Z, Li S, Tian G, Wang L, Huang J, Li S. J. Hazard. Mater., 2010, 176: 119-124
[27] Clement O, Rapko B M, Hay B P. Coord. Chem. Rev., 1998, 170: 203-243
[28] Hay B P, Clement O, Sandrone G, Dixon D A. Inorg. Chem., 1998, 37: 5887-5894
[29] Manchanda V K, Pathak P N. Sep. Purif. Technol., 2004, 35: 85-103
[30] Sasaki Y, Tachimori S. Solvent Extr. Ion Exch., 2002, 20: 21-34
[31] Gupta K K, Manchanda V K, Subramanian M S, Singh R K. Solvent Extr. Ion Exch., 2000, 18: 273-292
[32] Thiollet G, Musikas C. Solvent Extr. Ion Exch., 1989, 7: 813-827
[33] Akhila Maheswari M, Subramanian M S. Talanta, 2005, 65: 735-742
[34] Raju C S K, Subramanian M S. Sep. Purif. Technol., 2007, 55: 16-22
[35] Marie-Claire H. J. Chromatogr. A, 1999, 856: 3-54
[36] Condamines N, Musikas C. Solvent Extr. Ion Exch., 1992, 10: 69-100
[37] Prabhakaran D, Subramanian M S. Talanta, 2005, 65: 179-184
[38] Nogami M, Ishihara T, Suzuki K, Ikeda Y. J. Radioanal. Nucl. Chem., 2007, 273: 37-41
[39] 沈朝洪(Shen C H), 包亚之(Bao Y Z), 包伯荣(Bao B R), 王高栋(Wang G D), 钱军(Qian J), 曹正白(Cao Z B). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 1992, (2): 94-100
[40] Pantchev I, Farquet P, Surbeck H, Meyer T. React. Funct. Polym., 2007, 67: 127-135
[41] Butler F E, Hall R M. Anal. Chem., 1970, 42: 1073-1076
[42] Karande A P, Mallik G K, Panakkal J P, Kamath H S, Bhargava V K, Mathur J N. J. Radioanal. Nucl. Chem., 2003, 256: 185-189
[43] Mincher B J, Modolo G, Mezyk S P. Solvent Extr. Ion Exch., 2009, 27: 579-606
[44] Lin Y H, Smart N G, Wai C M. Environ. Sci. Technol., 1995, 29: 2706-2708
[45] Zhu Y J, Jiao R Z. Nucl. Technol., 1994, 108: 361-369
[46] Burger L L. J. Phys. Chem., 1958, 62: 590-593
[47] Naik P W, Dhami P S, Misra S K, Jambunathan U, Mathur J N. J. Radioanal. Nucl. Chem., 2003, 257: 327-332
[48] Yuan L Y, Liu Y L, Shi W Q, Lv Y L, Lan J H, Zhao Y L, Chai Z F. Dalton Trans., 2011, 40: 7446-7453
[49] Merdivan M, Buchmeiser M R, Bonn G. Anal. Chim. Acta, 1999, 402: 91-97
[50] Bagnall K W. Gmelin Handbook of Inorganic Chemistry, Uranium, 55-Supplement, vol. E1. Berlin: Springer, 1979. 100-103
[51] Raju C S K, Subramanian M S. J. Hazard. Mater., 2007, 145: 315-322
[52] Prabhakaran D, Subramanian M S. Anal. Bioanal. Chem., 2004, 380: 578-585
[53] Raju C S K, Subramanian M S. Talanta, 2005, 67: 81-89
[54] Prabhakaran D, Subramanian M S. Anal. Bioanal. Chem., 2004, 379: 519-525
[55] Maheswari M A, Subramanian M S. Talanta, 2004, 64: 202-209
[56] Maheswari M A, Subramanian M S. React. Funct. Polym., 2005, 62: 105-114
[57] Dabrowski A, Barczak M, Dudarko O A, Zub Y L. Pol. J. Chem., 2007, 81: 475-483
[58] Dudarko O A, Goncharik V P, Semenii V Y, Zub Y L. Prot. Met., 2008, 44: 193-197
[59] Dudarko O A, Mel'nik I V, Zub Y L, Chuiko A A, Dabrowski A. Colloid J., 2005, 67: 683-687
[60] Dudarko O A, Mel'nyk I V, Zub Y L, Chuiko A A, Dabrowski A. Inorg. Mater., 2006, 42: 360-367
[61] Dudarko O A, Melnyk I V, Zub Y L, Dabrowski A. Characterization of Porous Solids Vii-Proceedings of the 7th International Symposium on the Characterization of Porous Solids, ed. Aix en Provence: Univ Provence, 2006. 479-486
[62] Dudarko O A, Zub Y L, Semenii V Y, Dabrowski A. Colloid J., 2007, 69: 66-74
[63] Mel'nik I V, Stolyarchuk N V, Dudarko O A, Zub Y L, Dabrowski A, Barczak M, Alonso B. Prot. Met. Phys. Chem., 2010, 46: 206-214
[64] Metilda P, Sanghamitra K, Gladis J M, Naidu G R K, Rao T P. Talanta, 2005, 65: 192-200
[65] Anirudhan T S, Divya L, Suchithra P S. J. Environ. Manage., 2009, 90: 549-560
[66] Denizli A, Say R, Garipcan B, Patir S. React. Funct. Polym., 2004, 58: 123-130
[67] Dev K, Pathak R, Rao G N. Talanta, 1999, 48: 579-584
[68] Prabhakaran D, Subramanian M S. Talanta, 2003, 61: 423-430
[69] Xu J D, Raymond K N. Inorg. Chem., 1999, 38: 308-315
[70] Lin Y H, Fiskum S K, Yantasee W, Wu H, Mattigod S V, Vorpagel E, Fryxell G E, Raymond K N, Xu J D. Environ. Sci. Technol., 2005, 39: 1332-1337
[71] Tian G, Geng J, Jin Y, Wang C, Li S, Chen Z, Wang H, Zhao Y, Li S. J. Hazard. Mater., 2011, 190: 442-450
[72] Sert , Eral M. J. Nucl. Mater., 2010, 406: 285-292
[73] Tbal H, Morcellet J, Delporte M, Morcellet M. J. Macromol. Sci. Part A, 1992, 29: 699-710
[74] Zhang A, Asakura T, Uchiyama G. React. Funct. Polym., 2003, 57: 67-76
[75] Zhang A, Uchiyama G, Asakura T. React. Funct. Polym., 2005, 63: 143-153
[76] Zhang A, Uchiyama G, Asakura T. Adsorp. Sci. Technol., 2003, 21: 761-773
[77] Kawai T, Saito K, Sugita K, Katakai A, Seko N, Sugo T, Kanno J I, Kawakami T. Ind. Eng. Chem. Res., 2000, 39: 2910-2915
[78] Kavakl P A, Seko N, Tamada M, Güven O. Sep. Sci. Technol., 2005, 39: 1631-1643
[79] Kavakli P, Seko N, Tamada M, Güven O. Adsorption, 2005, 10: 309-315
[80] Piron E, Domard A. Int. J. Biol. Macromol., 1998, 22: 33-40
[81] Park G I, Park H S, Woo S I. Sep. Sci. Technol., 1999, 34: 833-854
[82] Wang G, Liu J, Wang X, Xie Z, Deng N. J. Hazard. Mater., 2009, 168: 1053-1058
[83] 王彩霞(Wang C X), 刘云海(Liu Y H), 庞翠(Pang C). 中国核科学技术进展报告(第一卷)(Progress Peport on China Nuclear Science & Technology(Vol. 1)), 2009, 11: 183-192
[84] Oshita K, Oshima M, Gao Y, Lee K H, Motomizu S. Anal. Chim. Acta, 2003, 480: 239-249
[85] Vnak P, Özdemir D, Vnak T. J. Radioanal. Nucl. Chem., 1993, 176: 55-64
[86] Gladis J M, Rao T P. Anal. Bioanal. Chem., 2002, 373: 867-872
[87] Jain V K, Handa A, Sait S S, Shrivastav P, Agrawal Y K. Anal. Chim. Acta, 2001, 429: 237-246
[88] Matsuda M, Akiyoshi Y. Nippon Kagaku Kaishi, 1991, 336-341
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[3] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[4] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[5] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[6] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[7] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[8] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[9] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[10] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[11] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[12] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[13] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[14] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[15] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
阅读次数
全文


摘要

铀的复合吸附材料