不同形貌纳米FeNi合金的制备

姚永林, 张传福*, 湛菁, 邬建辉, 黎昌俊

化学进展 ›› 2012, Vol. 24 ›› Issue (12) : 2312-2319.

PDF(795 KB)
English
PDF(795 KB)
化学进展 ›› 2012, Vol. 24 ›› Issue (12) : 2312-2319.
引用本文:

引用本文
姚永林, 张传福*, 湛菁, 邬建辉, 黎昌俊 . 不同形貌纳米FeNi合金的制备[J]. 化学进展, 2012, 24(12): 2312-2319
Yao Yonglin, Zhang Chuanfu*, Zhan Jing, Wu Jianhui, Li Changjun . Preparation of FeNi Nano-Alloy with Various Morphologies[J]. Progress in Chemistry, 2012, 24(12): 2312-2319
综述与评论

不同形貌纳米FeNi合金的制备

  • 姚永林, 张传福*, 湛菁, 邬建辉, 黎昌俊
作者信息 +

Preparation of FeNi Nano-Alloy with Various Morphologies

  • Yao Yonglin, Zhang Chuanfu*, Zhan Jing, Wu Jianhui, Li Changjun
Author information +
文章历史 +

摘要

纳米FeNi合金因其独特的电磁及催化性能在磁记录、催化剂、吸波材料及生物医学等领域存在广阔的应用前景。由于材料的形貌对其性能有着重要的影响,本文重点介绍了不同形貌(球形、一维形貌、纳米点阵、纳米环、纳米片、纳米花、树枝状及无特定形貌)纳米FeNi合金的制备方法,叙述了各方法制备纳米FeNi合金的基本原理及调控规律,并对各方法的优缺点作出了简要评价。同时,对材料形貌与尺寸对其性能影响的机理及规律作出了简要说明,阐述了其形貌及结构特征对材料性质的影响,指出了不同形貌纳米FeNi合金的优势应用领域。最后,对该领域未来的研究方向作出了展望。

Abstract

As an important functional material, FeNi nano-alloy exhibits great potential for using as magnetic recording materials, catalyst, absorbing materials, biomedicine materials and so on for its unique electromagnetic and catalytic properties. Due to the important impact of morphology of the material on its performance, the preparation of FeNi nanostructure with various morphologies including nanosphere, one-dimensional nanostructure, nanodot, nanoring, nanoplate, nanoflower, nanobranch and no particular shape are summarized in this paper. The basic principles and regulation rules of each method are described, and the advantages and disadvantages are evaluated briefly. The mechanism and law of the morphology and size of the material that influence on its properties are also described, and the application fields of FeNi nano-alloy with different morphologies are pointed out. Finally, the future research direction is prospected. Contents
1 Introduction
2 Preparation of FeNi nano-alloy
2.1 Nanospheres
2.2 One-dimensional nanostructure
2.3 Nanodots
2.4 Nanorings
2.5 Nanoplates
2.6 Nanoflowers
2.7 Nanobranches
2.8 No particular shape
3 Conclusion and outlook

关键词

纳米 / FeNi / 形貌 / 制备

Key words

nanometer / FeNi / morphologies / preparation

中图分类号: O614.81    TB383   

参考文献

[1] Hickey M C, Atkinson D, Marrows C H, Hickey B J. J. Appl. Phys., 2008, 103: art. no. 07D518
[2] Chou S Y, Krauss P R, Kong L. J. Appl. Phys., 1996, 79: art. no. 6101
[3] Zhang W H, Quan X, Zhang Z Y. J. Environ. Sci., 2007, 19: 362-366
[4] Schrick B, Blough J L, Jones A D, Mallouk T E. Chem. Mater., 2002, 14: 5140-5147
[5] Tanaka A, Yoon S H, Mochida I. Carbon, 2004, 42: 1291-1298
[6] Li X C, Gong R Z, Nie Y, Zhao Z S, He H H. Mater. Chem. Phys., 2005, 94: 408-411
[7] Feng Y B, Qiu T. J. Alloys Compd., 2012, 513: 455-459
[8] Park K Y, Han J H, Lee S B, Yi J W. Compos. A Appl. Sci. Manuf., 2011, 42: 573-578
[9] Yang H, Li X J, Zhou H, Zhuang Y M, Hu H, Wu H X, Yang S P. J. Alloys Compd., 2011, 509: 1217-1221
[10] Dai M F, Hsiao J K, Lee S C, Chen S T. The Chinese Journal of Process Engineering, 2006, 6: 249-252
[11] Ueda Y, Takahashi M. J. Phys. Soc. Jpn., 1980, 9: 477
[12] Dong X L, Zhang Z D, Jin S R, Sun W M, Zhao X G, Li Z J, Chuang Y C. J. Mater. Res., 1999, 14: 1782-1790
[13] Dong X L, Zhang Z D, Zhao X G, Chuang Y C, Jin S R, Sun W M. J. Mater. Res., 1999, 14: 398-406
[14] Liu Y S, Zhang J C, Yu L M, Jia G Q, Jing C, Cao S X. J. Magn. Magn. Mater., 2005, 285: 138-144
[15] Guillaume C E. C R. Acad. Sci. Paris, 1897, 125: 235-238
[16] Wohlfarth E P. Ferromagnetic Materials, vol. 2. Amsterdam: North-Holland Publishing Co., 1980. 123
[17] 朱俊武(Zhu J W), 张维光( Zhang W G), 王恒志(Wang H Z), 杨绪杰(Yang X J), 陆路德(Lu L D), 汪信(Wang X). 无机化学学报(Chin. J. Inorg. Chem. ), 2004, 20: 863-867
[18] Gleiter H. Acta Mater., 2000, 48: 1-29
[19] Hao E, Bailey R C, Schatz G C, Hupp J T, Li S. Nano Lett., 2004, 4: 327-330
[20] Ramaye Y, Neveu S, Cabuil V. J. Magn. Magn. Mater., 2005, 289: 28-31
[21] He Y, Shi G G. J. Phys. Chem. B, 2005, 109: 17503-17511
[22] Herzer G. IEEE Trans. Magn., 1990, 26: 1397-1402
[23] Herzer G. Scr. Metall. Mater., 1995, 33: 1741-1756
[24] Gurmena S, Ebina B, Stopi Dc' S, Friedrich B. J. Alloys Compd., 2009, 480: 529-533
[25] Chau J L H. Mater. Lett., 2007, 61: 2753-2756
[26] Duhamel C, Champion Y, Tencé M, Walls M. J. Alloys Compd., 2005, 393: 204-210
[27] Liao Q L, Tannenbaum R, Wang Z L. J. Phys. Chem. B, 2006, 110: 14262-14265
[28] Lu X G, Liang G Y, Zhang Y M. Mater. Sci. Eng. B, 2007, 139: 124-127
[29] Chen Y Z, She H D, Luo X H, Yue G H, Mi W B, Bai H L, Peng D L. J. Nanosci. Nanotechnol., 2010, 10: 3053-3059
[30] McNerny K L, Kim Y, Laughlin D E, McHenry M E. J. Appl. Phys., 2010, 107: art. no. 09A312
[31] Larin V S, Torcunov A V, Zhukov A, Gonzalez J, Vazquez M, Panina L. J. Magn. Magn. Mater., 2002, 249: 39-45
[32] Strom-Olsen J. Mater. Sci. Eng. A, 1994, A178: 239-243
[33] Clow B B. Adv. Mater. Processes, 1996, 150: 33-34
[34] Tourillon G, Pontonnier L, Levy J P, Langlais V. Electrochem. Solid-State Lett., 2000, 3: 20-23
[35] Yang Y W, Chen Y B, Liu F, Chen X Y, Wu Y C. Electrochim. Acta, 2011, 56: 6420-6425
[36] Xue T, Wang X, Lee J M. J. Power Sources, 2012, 201: 382-386
[37] Kovtyukhova N I, Mallouk T E. Nanoscale, 2011, 3: 1541-1552
[38] Cortes A, Lavin R, Denardin J C, Marotti R E, Dalchiele E A, Valdivia P, Gomez H. J. Nanosci. Nanotechnol., 2011, 11: 3899-3910
[39] Inguanta R, Rinaldo E, Piazza S, Sunseri C. Electrochem. Solid-State Lett., 2010, 13: K1-K4
[40] Xue S H, Li M, Wang Y H, Xu X M. Thin Solid Films, 2009, 517: 5922-5926
[41] Rousse C, Fricoteaux P. J. Mater. Sci., 2011, 46: 6046-6053
[42] Nur U S, Kok K Y, Ng I K. Adv. Mater. Res., 2012, 364: 303-307
[43] Wang X L. J. Mater. Sci., 2012, 47: 739-745
[44] Kashi M A, Ramazani A, Akhshi N, Esmaeily A S. Jpn. J. Appl. Phys., 2012, 51: art. no. 025003
[45] Fathi R, Sanjabi S, Bayat N. Mater. Lett., 2012, 66: 346-348
[46] Atalay F E, Kaya H, Atalay S, Tari S. J. Alloys Compd., 2009, 469: 458-463
[47] Bogart L K, Atkinson D, O’Shea K, McGrouther D, McVitie S. Phys. Rev. B, 2009, 79: art. no. 054414
[48] O’Shea K J, McVitie S, Chapman J N, Weaver J M R. Appl. Phys. Letts., 2008, 93: art. no. 202505
[49] Petit D, Jausovec A V, Read D, Cowburn R P. J. Appl. Phys., 2008, 103: art. no. 114307
[50] Liew H F, Low S C, Lew W S. J. Phys. Conf. Ser., 2011, 266: art. no. 012058
[51] Aravamudhan S, Singleton J, Goddard P A, Bhansali S. J. Phys. D: Appl. Phys., 2009, 42: art. no. 115008
[52] Aravamudhan S, Luongo K, Poddar P, Srikanth H, Bhansali S. Appl. Phys. A, 2007, 87: 773-780
[53] Lv R T, Kang F Y, Cai D Y, Wang C, Gu J L, Wang K L, Wu D H. J. Phys. Chem. Solids, 2008, 69: 1213-1217
[54] Xu M H, Zhong W, Qi X S, Au C T, Deng Y, Du Y W. J. Alloys Compd., 2010, 495: 200-204
[55] Wei X W, Zhu G X, Zhou J H, Sun H Q. Mater. Chem. Phys., 2006, 100: 481-485
[56] Suh Y J, Jang H D, Chang H, Kim W B, Kim H C. Powder Technol., 2006, 161: 196-201
[57] Jia J, Yu J C, Wang Y X J, Chan K M. ACS Appl. Mater. Interfaces, 2010, 2: 2579-2584
[58] Xu Y B, Hirohata A, Lopez-Diaz L, Leung H T, Tselepi M, Gardiner S M, Lee W Y, Bland J A C, Rousseaux F, Cambril E, Launois H. J. Appl. Phys., 2000, 87: 7019-7021
[59] Terris B D, Albrecht M, Hu G, Thomson T, Rettner C T. IEEE Trans. Magn., 2005, 41: 2822-2827
[60] McClelland G M, Hart M W, Rettner C T, Best M E, Carter K R, Terris B D. Appl. Phys. Lett., 2002, 81: 1483-1485
[61] Ross C A, Haratani S, Castano F J, Hao Y, Hwang M, Shima M, Cheng J Y, Vogeli B, Farhoud M, Walsh M, Smith H I. J. Appl. Phys., 2002, 91: 6848-6853
[62] Tanaka M, Itoh K, Iwamoto H, Yamaguchi A, Miyajima H, Yamaoka T. J. Magn. Magn. Mater., 2007, 310: e792-e793
[63] Liu W, Zhong W, Qiu L, Lu L Y, Du Y W. Eur. Phys. J. B, 2006, 51: 501-506
[64] Weekes S M, Ogrin F Y, Murray W A, Keatley P S. Langmuir, 2007, 23: 1057-1060
[65] Tiberto P, Boarino L, Celegato F, Coisson M, Enrico E, de Leo N, Vinai F, Allia P. J. Nanopart. Res., 2011, 13: 4211-4218
[66] Niu D X, Zou X, Wu J, Xu Y B. IEEE Trans. Magn., 2008, 44: 2749-2752
[67] Miller M M, Prinz G A, Cheng S F, Bounnak S. Appl. Phys. Lett., 2002, 81: 2211-2213
[68] Ren Y, Adeyeye A O. J. Appl. Phys., 2009, 105: art. no. 063901
[69] Ren Y, Jain S, Adeyeye A O, Ross C A. New J. Phys., 2010, 12: art. no. 093003
[70] Wang H Z, Li J G, Kou X L, Zhang L. J. Cryst. Growth, 2008, 310: 3072-3076
[71] Ciszek J W, Huang L, Wang Y, Mirkin C A. Small, 2008, 4: 206-210
[72] Xia Y, Xiong Y, Lim B, Skrabalak S E. Angew. Chem., 2009, 48: 60-103
[73] Zhou X M, Wei X W. Cryst. Growth Des., 2009, 9: 7-12
[74] Liu L J, Guan J G, Shi W D, Sun Z G, Zhao J S. J. Phys. Chem. C, 2010, 114: 13565-13570
[75] Hong Y, Rheem Y, Lai M, Cwiertny D M, Walker S L, Myung N V. Chem. Eng. J., 2009, 151: 66-72
[76] Schlup W, Grewe H. Int. J. Mater. Prod. Technol., 1990, 5: 281-292
[77] Jartych E, Zurawicz J K, Oleszak D, Pekala M. J. Magn. Magn. Mater., 2000, 208: 221-230
[78] Kaloshkin S D, Tcherdyntsev V V, Tomilin I A, Baldokhin Y V, Shelekhov E V. Phys. B Condens. Matter., 2001, 299: 236-241
[79] Zhu L H, Huang Q W. Mater. Lett., 2003, 57: 4070-4073
[80] Fecht H J, Hellstern E, Fu Z, Johnson W L. Metall. Trans. A, 1990, 21A: 2333-2337
[81] Frase H N, Shull R D, Hong L B, Stephens T A, Gao Z Q, Fultz B. Nanostruct. Mater., 1999, 11: 987-993
[82] Le Caer G, Ziller T, Delcroix P, Bellouard C. Hyperfine Interact., 2000, 130: 45-70
[83] Zhou P H, Deng L J, Xie J L, Liang D F, Chen L. J. Electron. Sci. Technol. China, 2005, 3: 164-167
[84] Azizi A, Sadrnezhaad S K. J. Alloys Compd. 2009, 485: 484-487
[85] Azizi A. Mater. Sci. Eng. B, 2011, 176: 1517-1520

基金

湖南省科学技术厅科技计划一般项目(No. 2010FJ3012)资助


PDF(795 KB)

3447

Accesses

0

Citation

Detail

段落导航
相关文章

/