English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

有机微纳米材料的设计策略、加工及应用

杨柳1, 雷霆2, 裴坚*1,2, 刘晨江* 1   

  1. 1. 石油天然气精细化工教育部&自治区重点实验室 乌鲁木齐绿色催化与合成技术重点实验室 新疆大学化学与化工学院 乌鲁木齐830046;
    2. 北京大学化学与分子工程学院 北京 100871
  • 收稿日期:2012-05-01 修回日期:2012-06-01 出版日期:2012-12-24 发布日期:2012-12-11
  • 通讯作者: 裴坚, 刘晨江 E-mail:pxylcj@126.com;jianpei@pku.edu.cn
  • 基金资助:

    国家自然科学基金项目 (No. 21162025,20862016,20662009) 和乌鲁木齐市科技计划项目 (No.H101133001) 资助

Design Strategy , Processing and Applications of Organic Micro- and Nano-Materials

Yang Liu1, Lei Ting2, Pei Jian*1,2, Liu Chenjiang* 1   

  1. 1. Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, China;
    2. College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received:2012-05-01 Revised:2012-06-01 Online:2012-12-24 Published:2012-12-11
有机微纳米材料是一类新型的材料体系,具备了传统体相有机材料诸多特点,同时由于尺寸效应表现出独特的物理化学特性,因而在最近几年引起了广泛的关注。相比传统的无机微纳米材料体系,有机微纳米材料构筑单元选择广泛、可调控性强、加工成本低以及易于大规模加工,目前已被应用在有机场效应晶体管、有机光伏太阳能电池等方面。本文总结了有机微纳米材料的加工方法,利用超分子化学的概念探讨了有机微纳米材料的分子设计思路,以及有机微纳米材料的生长机理,并介绍了其相关应用。
Organic micro- and nano-materials is a kind of novel material system, possessing a good many features of traditional bulk organic materials, and exhibiting unique physicochemical characteristics due to size effect. Thus they have attracted more and more attentions in recent years. In comparison with traditional inorganic micro- and nano-materials, organic micro- and nano-materials possesses some merits such as unlimited choice of building blocks, low-cost, ease for large-area fabrication, and they have been applied in organic field-effect transistors, organic photovoltaic solar cells and so on. In this paper, we summarizes recent development of organic micro- and nano-materials. Using the concept of supramolecular chemistry, we discusses molecule design strategy and growth mechanism of organic micro- and nano-materials, and their applications. Contents
1 Introduction
2 Molecular design strategy and synthesis
2.1 π-π interaction
2.2 S-S interaction
2.3 Donor-acceptor interaction
2.4 Hydrophobic interaction
2.5 Hydrogen-bonding interaction
3 Controlled growth and growth mechanism of organic micro- and nano-materials
3.1 Internal factors of the organic micro- and nano-materials growth
3.2 External actors of the organic micro- and nano-materials growth
4 The applications of organic micro- and nano-materials
4.1 Organic field-effect transistors
4.2 Organic photovoltaic solar cells
5 Conclusion and Outlook

中图分类号: 

()
[1] Nozik A J, Beard M C, Luther J M, Law M, Ellingson R J, Johnson J C. Chem. Rev., 2010, 110: 6873-6890
[2] Hu J T, Odom T W, Lieber C M. Acc. Chem. Res., 1999, 32: 435-445
[3] Sun T L, Feng L, Gao X F, Jiang L. Acc. Chem. Res., 2005, 38: 644-652
[4] Zhao Y S, Fu H, Peng A, Ma Y, Liao Q, Yao J. Acc. Chem. Res., 2010, 43: 409-418
[5] Lei T, Pei J. J. Mater. Chem., 2012, 22: 785-798
[6] Tang Q, Li H, Liu Y, Hu W. J. Am. Chem. Soc., 2006, 128: 14634-14639
[7] Zhang Y, Dong H, Tang Q, Ferdous S, Liu F, Mannsfeld S C B, Hu W, Briseno A L. J. Am. Chem. Soc., 2010, 132: 11580-11584
[8] Zang L, Che Y, Moore J S. Acc. Chem. Res., 2008, 41: 1596-1600
[9] Clar E, Ironside C T. Proc. Chem. Soc., 1958, 150-152
[10] Müller M, Kubel C, Müllen K. Chem. Eur. J., 1998, 4: 2099-2109
[11] Ito S, Wehmeier M, Brand J D, Brand J D, Kübel C, Epsch R, Rabe J P, Müllen K. Chem. Eur. J., 2000, 6: 4327-4342
[12] Fechtenkōtter A, Tchebotareva N, Watson M, Müllen K. Tetrahedron, 2001, 57: 3769-3783
[13] Wu J, Pisula W, Müllen K. Chem. Rev., 2007, 107: 718-747
[14] Grimsdale A C, Müllen K. Angew. Chem. Int. Ed., 2005, 44: 5592-5629
[15] Wu J, Tomovic Z, Enkelmann V, Müllen K. J. Org. Chem., 2004, 69: 5179-5186
[16] Tomovic Z, Watson M D, Müllen K. Angew. Chem. Int. Ed., 2004, 43: 755-758
[17] Simpson C D, Brand J D, Berresheim A J, Przybilla L, Rāder H J, Müllen K. Chem. Eur. J., 2002, 8: 1424-1429
[18] Kelley T W, Muyres D V, Baude P F, Smith T P, Jones T D. Mater. Res. Soc. Symp. Proc., 2003, 771: 169-179
[19] Mas-Torrent M, Durkut M, Hadley P, Ribas X, Rovira C. J. Am. Chem. Soc., 2004, 126: 984-985
[20] Ebata H, Izawa T, Miyazaki E, Takimiya K, Ikeda M, Kuwabara H, Yui T. J. Am. Chem. Soc., 2007, 129: 15732-15733
[21] Wang J Y, Zhou Y, Yan J, Ding L, Ma Y, Cao Y, Wang J, Pei J. Chem. Mater., 2009, 21: 2595-2597
[22] Brusso J L, Hirst O D, Dadvand A, Ganesan S, Cicoira F, Robertson C M, Oakley R T, Rosei F, Perepichka D F. Chem. Mater., 2008, 20: 2484-2494
[23] Sun Y M, Tan L, Jiang S D, Qian H L, Wang Z H, Yan D W, Di C G, Wang Y, Wu W P, Yu G, Yan S K, Wang C R, Hu W P, Liu Y Q, Zhu D B. J. Am. Chem. Soc., 2007, 129: 1882-1883
[24] Jiang W, Zhou Y, Geng H, Jiang S D, Yan S K, Hu W P, Wang Z H, Shuai Z G, Pei J. J. Am. Chem. Soc., 2011, 133: 1-3
[25] Park L Y, Hamilton D G, McGehee E A, McMenimen K A. J. Am. Chem. Soc., 2003, 125: 10586-10590
[26] Wang C, Yin S, Chen S, Xu H, Wang Z, Zhang X. Angew. Chem. Int. Ed., 2008, 47: 9049-9052
[27] Zhang W, Dichtel W R, Stieg A Z, Benítez D, Gimzewski J K, Heath J R, Stoddart J F. Proc. Natl. Acad. Sci. U. S. A., 2008, 105: 6514-6519
[28] Arikainen E O, Boden N, Bushby R J, Lozman O R, Vinter J G, Wood A. Angew. Chem. Int. Ed., 2000, 39: 2333-2336
[29] Clarke T M, Durrant J R. Chem. Rev., 2010, 110: 6736-6767
[30] Wang J Y, Yan J, Li Z, Han J M, Ma Y, Bian J, Pei J. Chem. Eur. J., 2008, 14: 7760-7764
[31] Wang J Y, Yan J, Ding L, Ma Y, Pei J. Adv. Funct. Mater., 2009, 19: 1746-1752
[32] Jin W, Yamamoto Y, Fukushima T, Ishii N, Kim J, Kato K, Takata M, Aida T. J. Am. Chem. Soc., 2008, 130: 9434-9440
[33] Yin J, Zhou Y, Lei T, Pei J. Angew. Chem. Int. Ed., 2011, 50: 6320-6323
[34] De Greef T F A, Smulders M M J, Wolffs M, Schenning A P H J, Sijbesma R P, Meijer E W. Chem. Rev., 2009, 109: 5687-5754
[35] Bong D T, Clark T D, Granja J R, Ghadiri M R. Angew. Chem. Int. Ed., 2001, 40: 988-1011
[36] Hameren R V, Schōn P, Buul A M V, Hoogboom J, Lazarenko S V, Gerritsen J W, Engelkamp H, Christianen P C M, Heus H A, Maan J C, Rasing T, Speller S, Rowan A E, Elemans J A A W, Nolte R J M. Science, 2006, 314: 1433-1436
[37] Luo J, Lei T, Wang L, Ma Y, Cao Y, Wang J, Pei J. J. Am. Chem. Soc., 2009, 131: 2076-2077
[38] Lei T, Guo Z H, Zheng C, Cao Y, Liang D, Pei J. Chem. Sci., 2012, 3: 1162-1165
[39] Lei T, Cheng C Y, Guo Z H, Zheng C, Zhou Y, Liang D, Pei J. J. Mater. Chem., 2012, 22: 4306-4310
[40] Balakrishnan K, Datar A, Naddo T, Huang J, Oitker R, Yen M, Zhao J, Zang L. J. Am. Chem. Soc., 2006, 128: 7390-7398
[41] Li R J, Hu W P, Liu Y Q, Zhu D B. Acc. Chem. Res., 2010, 43: 529- 540
[42] Perce V, Glodde M, Bera T K, Miura Y, Shiyanovskaya I, Singer K D, Balagurusamy V S K, Heiney P A, Schnell I, Rapp A, Spiess H W, Hudson S D, Duan H. Nature, 2002, 419: 384-387
[43] Hill J P, Jin W, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ishii N, Aida T. Science, 2004, 304: 1481-1483
[44] Chen H B, Zhou Y, Yin J, Yan J, Ma Y, Wang L, Cao Y, Wang J, Pei J. Langmuir, 2009, 25: 5459-5462
[45] Kloc C, Simpkins P G, Siegrist T, Laudise R A. J. Cryst. Growth, 1997, 182: 416-427
[46] Laudise R A, Kloc C, Simpkins P G, Siegrist T. J. Cryst. Growth, 1998, 187: 449-454
[47] Podzorov V, Sysoev S E, Loginova E, Pudalov V M, Gershenson M E. Appl. Phys. Lett., 2003, 83: 3504-3506
[48] Tong W Y, Djurisic A B, Xie M H, Ng A C M, Cheung K Y, Chan W K, Leung Y H, Lin H W, Gwo S. J. Phys. Chem. B, 2006, 110: 17406-17413
[49] Dodabalapur A. Mater. Today, 2006, 9: 24-30
[50] Zhou Y, Liu W J, Ma Y G, Wang H L, Qi L M, Cao Y, Wang J, Pei J. J. Am. Chem. Soc., 2007, 129: 12386-12387
[51] Zhou Y, Lei T, Wang L, Pei J, Cao Y, Wang J. Adv. Mater., 2010, 22: 1484-1487
[52] Xin H, Kim F S, Jenekhe S A. J. Am. Chem. Soc., 2008, 130: 5424-5425
[53] Li X C, Sirringhaus H, Garnier F, Holmes A B, Moratti S C, Feeder N, Clegg W, Teat S J, Friend R H. J. Am. Chem. Soc., 1998, 120: 2206-2207
[1] 裴强, 丁爱祥. 四重氢键自组装体系的设计与应用[J]. 化学进展, 2019, 31(2/3): 258-274.
[2] 李亚雯, 敖宛彤, 金慧琳, 曹利平. 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光[J]. 化学进展, 2019, 31(1): 121-134.
[3] 王梅祥*. 新型大环超分子化学:从杂杯芳烃到冠芳烃——纪念黄志镗先生诞辰90周年[J]. 化学进展, 2018, 30(5): 463-475.
[4] 陈禹夫, 李祥高, 肖殷, 王世荣. 溶液法大面积制备有机小分子场效应晶体管[J]. 化学进展, 2017, 29(4): 359-372.
[5] 林高波, 罗婷, 袁铝兵, 梁文杰*, 徐海*. 高性能的n-型和双极性有机小分子场效应晶体管材料[J]. 化学进展, 2017, 29(11): 1316-1330.
[6] 潘梅, 韦张文, 徐耀维, 苏成勇. 配位超分子自组装[J]. 化学进展, 2017, 29(1): 47-74.
[7] 董运红, 曹利平. 葫芦脲大环官能团功能化[J]. 化学进展, 2016, 28(7): 1039-1053.
[8] 夏梦婵, 杨英威. 基于柱芳烃的有机功能材料[J]. 化学进展, 2015, 27(6): 655-665.
[9] 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 导电聚合物薄膜的喷墨打印制备及其光电器件[J]. 化学进展, 2015, 27(11): 1615-1627.
[10] 钱小红, 金灿, 张晓宁, 姜艳, 林晨, 王乐勇. 方酰胺衍生物及其在离子识别中的应用[J]. 化学进展, 2014, 26(10): 1701-1711.
[11] 杨勇, 窦丹丹. 三重和四重氢键体系:设计、结构和应用[J]. 化学进展, 2014, 26(05): 706-726.
[12] 许良, 李勇军, 李玉良. 基于π体系的超分子功能材料的制备与应用研究[J]. 化学进展, 2014, 26(04): 487-501.
[13] 蔡晓舟, 江浪, 董焕丽, 李晶泽*, 胡文平* . 有机电路及其基本元器件[J]. 化学进展, 2012, 24(12): 2431-2442.
[14] 万鹏博, Hill Eric H., 张希. 界面超分子化学与响应性功能表面[J]. 化学进展, 2012, 24(01): 1-7.
[15] 刘智成, 王红, 杨睿, 李玮. 含磷杯芳烃及其配合物的合成与应用[J]. 化学进展, 2011, 23(8): 1665-1682.