English
新闻公告
More
化学进展 前一篇   

• 综述与评论 •

蛋白功能化磁性纳米颗粒的制备及应用

黄天天, 付雁, 张金利, 李韡*   

  1. 天津大学化工学院 天津 300072
  • 收稿日期:2012-01-01 修回日期:2012-03-01 出版日期:2012-08-24 发布日期:2012-08-06
  • 通讯作者: 李韡 E-mail:liwei@tju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20836005, 21076141)资助

Preparation and Application of Protein-Functionalized Magnetic Nanoparticles

Huang Tiantian, Fu Yan, Zhang Jinli, Li Wei   

  1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received:2012-01-01 Revised:2012-03-01 Online:2012-08-24 Published:2012-08-06
蛋白功能化磁性纳米颗粒作为一种新型功能复合材料,已成为众多领域的研究热点。蛋白质在颗粒表面的稳定性、负载量及构象显著影响复合粒子的应用性能,而磁性纳米颗粒表面物化性质对颗粒的稳定性、分散性及磁性能对蛋白质的高效负载有重要影响。本文综述了磁性纳米颗粒表面修饰、蛋白功能化的方法以及蛋白在界面处构象变化的表征方法,介绍了蛋白功能化磁性纳米颗粒在酶催化合成、免疫分析检测及生物传感器等领域的应用,并对其未来的发展趋势进行了展望。
Protein-functionalized magnetic nanoparticles have received considerable attention in many research areas as new functional composite materials. The stability, loading capacity and the conformation retention of the protein affect the application of the functional particles. The physicochemical properties of the surface not only affect the stability, dispersion and magnetism but also the effective loading of protein. In this paper, the surface modification of magnetic nanoparticles and the protein-functionalized methods are reviewed. Major applications of protein-functionalized magnetic nanoparticles are introduced in the field of enzymatic synthesis, detection analysis of immunoreactions, and biosensors, as well as the future developing prospects. Contents 1 Introduction
2 Preparation of protein-functionalized magnetic nanoparticles
2.1 Adsorption-based immobilization
2.2 Covalent immobilization
3 Application of protein-functionalized magnetic nanoparticles
3.1 Enzymatic synthesis
3.2 Detection analysis
3.3 Biosensors
4 Characterization of proteins immobilized on surfaces
5 Conclusion and outlook

中图分类号: 

()
[1] Hu A, Yee G T, Lin W J. Am. Chem. Soc., 2005, 127(36): 12486-12487
[2] Lien K Y, Lin J L, Liu C Y, Lei H Y, Lee G B. Lab Chip, 2007, 7(7): 868-875
[3] Sakudo A, Ikuta K. Biochem. Biophys. Res. Commun., 2008, 377(1): 85-88
[4] Chui L, Drebot M, Andonov A, Petrich A, Glushek M, Mahony J. Diagn. Microbiol. Infect. Dis., 2005, 53(1): 47-55
[5] Ivanova V, Petia P, Jordan H. Int. Rev. Chem. Eng., 2011, 3: 289-299
[6] 黄孟琼(Huang M Q), 王秀玲(Wang X L), 刘永健(Liu Y J). 化学学报(Acta Chimica Sinica), 2010, 68(16): 1623-1628
[7] Xie J, Liu G, Eden H S, Ai H, Chen X. Acc. Chem. Res., 2011, 44(10): 883-892
[8] Xiao L, Li J, Brougham D F, Fox E K, Feliu N, Bushmelev A, Schmidt A, Mertens N, Kiessling F, Valldor M, Fadeel B, Mathur S. ACS Nano, 2011, 5(8): 6315-6324
[9] Xu B, Dou H, Tao K, Sun K, Ding J, Shi W, Guo X, Li J, Zhang D, Sun K. Langmuir, 2011, 27: 12134-12142
[10] Fu A, Hu W, Xu L, Wilson R J, Yu H, Osterfeld S J, Gambhir S S, Wang S X. Angew. Chem. Int. Ed., 2009, 48: 1620-1624
[11] Lundqvist M, Stigler J, Cedervall T, Berggård T, Flanagan M B, Lynch I, Elia G, Dawson K. ACS Nano, 2011, 5(9): 7503-7509
[12] Casals E, Pfaller T, Duschl A, Oostingh G J, Puntes V. ACS Nano, 2010, 4(7): 3623-3632
[13] Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson K A. PNAS, 2008, 150(38): 14265-14270
[14] Wang J, Jensen U B, Jensen G V, Shipovskov S, Balakrishnan V S, Otzen D, Pedersen J S, Besenbacher F, Sutherland D S. Nano Lett., 2011, 11(11): 4985-4991
[15] De M, Ghosh P S, Rotello V M. Adv. Mater., 2008, 20: 4225-4241
[16] Valero E, Tambalo S, Marzola P, Ortega-Muoz M, López-Jaramillo F J, Santoyo-González F, de Dios López J, Delgado J J, Calvino J J, Cuesta R, Domínguez-Vera J M, Gálvez N. J. Am. Chem. Soc., 2011, 133: 4889-4895
[17] Hu M, Qian L, Brias R P, Lymar E S, Hainfeld J F. Angew. Chem. Int. Ed., 2007, 46(27): 5111-5114
[18] Hong R, Fischer N O, Verma A, Goodman C M, Emrick T, Rotello V M. J. Am. Chem. Soc., 2004, 126(3): 739-743
[19] Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson K A, Linse S. PNAS, 2007, 104(7): 2050-2055
[20] Klein J. PNAS, 2007, 104(7): 2029-2030
[21] Sun S, Zeng H. J. Am. Chem. Soc., 2002, 124: 8204-8205
[22] Lu A H, Salabas E L, Schüth F. Angew. Chem. Int. Ed., 2007, 46: 1222-1244
[23] Tong S, Hou S, Zheng Z, Zhou J, Bao G. Nano Lett., 2010, 10: 4607-4613
[24] Banerjee S S, Chen D H. Nanotechnology, 2008, 19: art. no. 505104
[25] Jun Y W, Choi J S, Cheon J. Chem. Commun, 2007, 1203-1214
[26] Laurent S, Forge D, Port M, Roch A, Robic C, Elst L V, Muller R N. Chem. Rev., 2008, 108: 2064-2110
[27] Lu A H, Salabas E L, Schüth F. Angew. Chem. Int. Ed., 2007, 46: 1222-1244
[28] Teja A S, Koh P Y. Prog. Cryst. Growth. Charact. Mater., 2009, 55: 22-45
[29] 赵紫来(Zhao Z L), 卞征云(Bian Z Y), 陈朗星(Chen L X)等. 化学进展(Progress in Chemistry), 2006, 18: 1288-1297.
[30] Ichiyanagi Y, Moritake S, Taira S, Setou M. Magn. Magn. Mater., 2007, 310: 2877-2879
[31] Sousa M H, Tourinho F A, Depeyrot J, de Silva G J, Lara M C F. J. Phys. Chem. B, 2001, 105(6): 1168-1175
[32] Yu C J, Lin C Y, Liu C H, Cheng T L, Tseng W L. Biosens. Bioelectron., 2010, 26(2): 913-917
[33] Dung D T K, Hai T H, Phuc L H, Long B D, Vinh L K, Truc P N. J. Phys. Conf. Ser., 2009, 187: art. no. 012036
[34] Kaushik A, Khan R, Solanki P R, Pandey P, Alam J, Ahmad S, Malhotra B D. Biosens. Bioelectron., 2008, 24(4): 676-683
[35] Sun J, Su Y J, Rao S Q, Yang Y J. J. Chromatogr. B, 2011, 879(23): 2194-2200
[36] Wang Y J, Wang X H, Luo G H, Dai Y. Bioresour. Technol., 2008, 99(9): 3881-3884
[37] Chang Z, Chen M, Fan H, Zhao K, Zhuang S Q, He P G, Fang Y Z. Electrochimica Acta, 2008, 53: 2939-2945
[38] Zhang L B, Chen H, Sun J Q, Shen J C. Chem. Mater., 2007, 19: 948-953
[39] 朱以华(Zhu Y H), 杨晓玲(Yang X L), 李培勇(Li P Y), 胡英(Hu Y). 化学进展(Progress in Chemistry), 2003, 15(06): 512-517
[40] Wang S X, Zhou Y, Niu H, Zhang X Z. Curr. Appl. Phys., 2011, 11(6): 1337-1342
[41] Al-Saadi A, Yu C H, Khutoryanskiy V V, Shih S J, Crossley A, Tsang S C. J. Phys. Chem. C, 2009, 113(34): 15260-15265
[42] Shamim N, Hong L, Hidajat K, Uddin M S. J. Colloid Interface Sci., 2006, 304: 1-8
[43] Sun Y B, Ding X B, Zheng Z H, Cheng X, Hu X H. Macromol. Rapid Commun., 2007, 28: 346-351
[44] Ma Z, Guan Y, Liu H. J. Magn. Magn. Mater., 2006, 301: 469-475
[45] Sun J, Rao S Q, Su Y J, Xu R R, Yan Y J. Colloids Surf. A, 2011, 389(1/3): 97-103
[46] Bele M, Hribar G, Campelj S, Makovec D, Gaberc-Porekar V, Zorko M, Gaberscek M, Jamnik J, Venturini P. J. Chromatogr. B, 2008, 867: 160-164
[47] Ma Z Y, Guan Y P, Liu H Z. J. Magn. Magn. Mater., 2006, 301: 469-477
[48] Nata I F, El-safory N S, Lee C K. ACS Appl. Mater. Inter., 2011, 3: 3342-3349
[49] Herdt A R, Kim B S, Taton T A. Bioconjugate Chem., 2007, 18: 183-189
[50] Kim J S, Valencia C A, Liu R H, Lin W B. Bioconjugate Chem., 2007, 18: 333-341
[51] De M, Rana S, Rotello V M. Macromol. Biosci., 2009, 9: 174-178
[52] Xu C, Xu K, Gu H, Zhong X, Guo Z, Zheng R, Zhang X, Xu B. J. Am. Chem. Soc., 2004, 126: 3392-3393
[53] Sun S, Ma M, Qiu N, Huang X, Cai Z X, Huang Q, Hu X. Colloids Surf. B, 2011, 88(1): 246-253
[54] Li D, Teoh W Y, Gooding J J, Selomulya C, Amal R. Adv. Funct. Mater., 2010, 20: 1767-1777
[55] 王刚(Wang G), 颜峰(Yan F), 滕兆刚(Teng Z G), 杨文胜(Yang W S), 李铁津(Li T J). 化学进展(Progress in Chemistry), 2006, 18: 238-245
[56] Sulek F, Zeljko K, Habulin M. Appl. Surf. Sci., 2010, 256: 4596-4600
[57] Sulek F, Miha D, Maja H. J. Magn. Magn. Mater., 2010, 322: 179-185
[58] Yi D K, Lee S S, Papaefthymiou G C, Ying J Y. Chem. Mater., 2006, 18: 614-619
[59] Liu Y, Jia S Y, Wu Q, Ran J Y, Zhang W, Wu S H. Catal. Commun., 2011, 12(8): 717-720
[60] Wu Y, Wang Y J, Luo G S, Dai Y Y. Bioresour. Technol., 2009, 100(14): 3459-3464
[61] Hong J, Gong P J, Yu J H, Xu D M, Sun H W, Yao S. J. Mol. Catal. B: Enzym., 2006, 42(3/4): 99-105
[62] Mateo C, Torres R, Fernández-Lorente G, Ortiz C, Fuentes M, Hidalgo A, López-Gallego F, Abian O, Palomo J M, Betancor L, Pessela B C, Guisan J M, Fernández-Lafuente R. Biomacromolecules, 2003, 4: 772-777
[63] Bayramoglu G, Arica M Y. J. Mol. Catal. B: Enzymatic, 2008, 55(1/2): 76-83
[64] Lei L, Bai Y X, Li Y F, Yi L X, Yang Y, Xia C G. J. Magn. Magn. Mater., 2009, 321: 252-258
[65] Liu X, Lei L, Li Y F, Zhu H, Cui Y J, Hu H Y. Biochem. Eng. J., 2011, 56(3): 142-149
[66] Park S W, Choi S Y, Chung K H, Hong S I, Kim S W. J Biosci. Bioeng., 2002, 94: 218-224
[67] 顾忠伟(Gu Z W), 罗奎(Luo K), 佘汶川(She W C), 吴尧(Wu Y), 何斌(He B). 中国科学: 化学(Scientia Sinica: Chimica), 2010, 40(3): 210-236
[68] Grayson S M, Frechet J M. Chem. Rev., 2001, 101: 3819-3867
[69] 李桂英(Li G Y), 张其震(Zhang Q Z), 李爱香(Li A X). 山东生物医学工程(Shangdong Journal of Biomedical Enfineering), 2003, 1: 57-59
[70] 吴丽平(Wu L P), 张政朴(Zhang Z P), 郭义(Guo Y), 王勇(Wang Y), 陆伟(Lu W). 高等学校化学学报(Chemical Journal of Chinese Universities), 2011, 6(32): 1436-1444
[71] 张春婷(Zhang C T), 苏萍(Su P), 高翔(Gao X), 丁芳宇(Ding F Y), 杨屹(Yang Y). 高分子通报(Polymer Bulletin), 2010, 12: 48-53
[72] Crooks R M, Zhao M, Sun L, Chechik V, Yeung L K. Acc. Chem. Res., 2001, 34: 181-190
[73] Uzun K, evik E, Senel M, Sözeri H, Baykal A, Abaslyanlk M F, Toprak M S. J. Nanopart. Res., 2010, 12: 3057-3067
[74] 邱素艳(Qiu S Y), 高森(Gao S), 林振宇(Lin Z Y), 陈国南(Chen G N). 化学进展(Progress in Chemistry), 2011, 23(4): 637-648
[75] Algar W R, Prasuhn D E, Stewart M H, Jennings T L, Blanco-Canosa J B, Dawson P E, Medintz I L. Bioconjugate Chem., 2011, 22(5): 825-858
[76] Husain Q. Crit. Rev. Biotechnol., 2010, 30: 41-62
[77] Mak K H, Yu C Y, Kuan I C, Lee S L. Sci. Technol. Vision, 2009, 5: 19-23
[78] Gao J H, Gu H W, Xu B. Acc. Chem. Res., 2009, 42(8): 1097-1107
[79] Kuroiwa T, Noguchi Y, Nakajima M, Sato S, Mukataka S, Ichitkwa S. Process Biochem., 2008, 43: 62-69
[80] 董青(Dong Q), 欧阳立明(Ouyang L M), 刘建文(Liu J W). Chin. J. Catal., 2010, 31: 1227-1232
[81] Pan C, Hu B, Li W, Sun Y, Ye H, Zeng X. J. Mol. Catal. B: Enzym., 2009, 61: 208-215
[82] Zhu H, Pan J, Hu B, Yu H L, Xu J H. J. Mol. Catal. B: Enzym., 2009, 61: 174-179
[83] Hu B, Pan J, Yu H L, Liu J W, Xu J H. Process Biochem., 2009, 44: 1019-1024
[84] Gehring A G, Irwin P L, Reed S A, Tu S, Andreotti P E, Akhavan-tafti H, Handley R S. J. Immunol. Methods, 2004, 293: 97-106
[85] Gehring A G, Albin D M, Irwin P L, Reed S A, Tu S. J. Microbiol. Methods, 2006, 67: 527-533
[86] 李智洋(Li Z Y), 何磊(He L), 何农跃(He N Y), 化学学报(ACTA, Chimica Sinica), 2010, 68(3): 251-256
[87] Blakemore R. Science, 1975, 190: 377-379
[88] Tadashi M, Kawasaki M, Yu X, Tsujimura N, Nakamura N. Anal. Chem., 1996, 68: 3551-3554
[89] Matsunaga T, Kamiya S. Appl. Microbiol. Biot., 1987, 2: 328-332
[90] Nakamura N, Hashimoto K, Matsunaga T. Anal. Chem., 1991, 63: 268-272
[91] Tanaka T, Matsunaga T. Anal. Chem., 2000, 72: 3518-3522
[92] Mazzucchelli S, Colombo M, De Palma C, Salvadè A, Verderio P, Coghi M D, Clementi E, Tortora P, Corsi F, Prosperi D. ACS Nano, 2010, 4(10): 5693-5702
[93] Tang T T, Fan H, Ai S Y, Han R X, Qiu Y Y. Chemosphere, 2011, 83: 255-264
[94] Marsza M P, Buciński A. J. Pharm. Biomed. Anal., 2010, 52: 420-424
[95] Li F Q, Zhang S X, Ge Y Q, Liu Q, Zhang F, Lu G M. Acta Biophysica Sinica, 2011, 27(4): 365-372
[96] 王进华(Wang J H). 南昌大学医学院博士论文(Doctoral Dissertation of Medical College of Nanchang University), 2009
[97] 龙亚平(Long Y P), 张耀东(Zhang Y D), 漆红兰(Qi H L). 药物分析杂志(Chinese Journal of Pharmaceutical Analysis), 2006, 26(12): 1702-1705
[98] Wei Y Y, Li Y, Qu Y H. Anal. Chim. Acta, 2009, 643: 13-18
[99] 刘佳(Liu J), 殷立峰(Yin L F), 代云容(Dai Y R), 江帆(Jiang F), 牛军峰(Niu J F). 化学进展(Progress in Chemistry), 2012, 24(01): 131-143
[100] Reetz M T, Zonta A, Vijayakrishnan V. J. Mol. Catal. A: Chem., 1998, 134: 251-258
[101] Cao D, He P L, Hu N. Analyst, 2003, 128: 1268-1274
[102] Huang J, Liu C, Xiao H, Wang J, Jiang D, Erdan G. U. Int. J. Nanomed., 2007, 2: 775-784
[103] Wang Y, Zhang X H, Chen Y, Xu H, Tan Y M, Wang S F. Am. J. Biomed. Sci., 2010, 2(3): 209-216
[104] Qiu J D, Xiong M, Liang R P. Biosens. Bioelectron., 2009, 24: 2649-2653
[105] 闵红(Min H), 曲云鹤(Qu Y H), 李晓华(Li X H). 化学学报(Acta Chimca Sinica), 2007, 65(20): 2303-2308
[106] 杨欣(Yang X), 巫远招(Wu Y Z), 谢东华(Xie D H). 农药学学报(Chinese Journal of Pesticide Science), 2009, 11(4): 441-448
[107] 陈绪胄(Chen X Z), 李建平(Li J P), 俞建国(Yu J G). 分析测试学报(Journal of Instrumental Analysisi), 2008, 7(4): 396-400
[108] Koutsopoulos S, van der Oost J, Norde W. Langmuir, 2004, 20: 6401-6406
[109] Larsericsdotter H, Oscarsson S, Buijs J. J. Colloid Interface Sci., 2001, 237: 98-103
[110] Rezwan K, Meier L P, Gauckler L J. Biomaterials, 2005, 26: 4351-4357
[111] Vertegel A, Siegel R W, Dordick J S. Langmuir, 2004, 20: 6800-6807
[112] Liu H, Tian Y, Deng Z. Langmuir, 2007, 23: 9487-9494
[113] Lundqvist M, Sethson I, Jonsson B H. Langmuir, 2004, 20: 10639-10647
[114] Norde W. Adv. Colloid Interface Sci., 1986, 25: 267-340
[115] Jin W, Brennan J D. Anal. Chim. Acta, 2002, 461: 1-36
[116] Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson K A, Linse S. Proc. Natl. Acad. Sci., 2007, 104: 2050-2055
[117] Rocker C, Potzl M, Zhang F, Parak W J, Nienhaus G U. Nat. Nanotech., 2009, 4: 577-580
[118] Li D J, Zhang T, Xu C, Ji B M. J. Photochem. Photobiol. B, 2011, 104(3): 414-24
[119] Yong Y H, Yamaguchi S, Matsumura Y. J. Agric. Food Chem., 2006, 54(16): 6034-6040
[120] Steiner G, Tunc S, Maitz M, Salzer R. Anal. Chem., 2007, 79: 1311-1316
[121] Buijs J, Norde W, Lichtenbelt J W T. Langmuir, 1996, 12: 1605-1613
[122] Tsai D H, Davila-Morris M, Delrio F W, Guha S, Zachariah M R, Hackley V A. Langmuir, 2011, 27: 9302-9313
[123] Zhang H M, Chen J, Zhou Q H, Shi Y Q, Wang Y Q. J. Mol. Struct., 2011, 987: 7-12
[124] Rezaei-Tavirani M, Moghaddamnia S H, Ranjbar B, Amani M, Marashi S A. J. Biochem. Mol. Biol., 2006, 39: 530-536
[125] Tobias D J, Mar W, Blasic J K, Klein M L. Biophys J., 1964, 71: 2933-2941
[126] 章爱娟(Zhang A J), 谢韵(Xie Y), 周健(Zhou J). 化学进展(Progress in Chemistry), 2009, 21: 1408-1417
[127] Cukalevski R, Lundqvist M, Oslakovic C, Linse S, Cedervall T, Langmuir, 2011, 27(23): 14360-14369
[128] Parfenyuk E V, Kulikova G A, Ryabinina1 I V. J. Therm. Anal. Calorim., 2010, 100: 987-991
[129] Wang J, Jensen U B, Jensen G V, Shipovskov S, Balakrishnan V S, Otzen D, Pedersen J S. Nano Lett., 2011, 11: 4985-4991
[130] Tsai DH, DelRio F W, Keene A M, Tyner K M, Maccuspie R I, Cho T J, Zachariah M R, Hackley V A. Langmuir., 2011, 27: 2464-2477
[131] Sun J, Xu R R, Yang Y J. J. Chromatogr. B, 2011, 879(28): 3053-3058
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[3] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[4] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[5] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[6] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[7] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[8] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[9] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[10] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[11] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[12] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[13] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[14] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[15] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.