English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

基于晶格氧的甲烷化学链重整制合成气

黄振, 何方*, 赵坤, 郑安庆, 李海滨, 赵增立   

  1. 中国科学院广州能源研究所 中国科学院可再生能源与天然气水合物重点实验室 广州 510640
  • 收稿日期:2011-11-01 修回日期:2012-02-01 出版日期:2012-08-24 发布日期:2012-08-06
  • 通讯作者: 何方 E-mail:hefang@ms.giec.ac.cn
  • 基金资助:

    “十二五”国家科技支撑计划项目(No.2011BAD15B05)、国家自然科学基金项目(No.51076154)和广东省科技计划项目(No.2010B010900047)资助

Synthesis Gas Production by Chemical-Looping Reforming of Methane Using Lattice Oxygen

Huang Zhen, He Fang, Zhao Kun, Zheng Anqing, Li Haibin, Zhao Zengli   

  1. Key Laboratory of Renewable Energy and Gas Hydrate of Chinese Academy of Sciences, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
  • Received:2011-11-01 Revised:2012-02-01 Online:2012-08-24 Published:2012-08-06
利用氧载体中的晶格氧代替分子氧进行的甲烷化学链重整制合成气,是一种新颖的甲烷制合成气技术,具有较高经济效益和环境效应。它具有省却纯氧设备、能自热、合适的氢碳比、有用的副产物以及过程易于工业化等优点,因此受到国内外研究者的普遍关注。本文介绍了化学链重整技术的基本原理及其特点;重点总结了用于甲烷化学链重整的单金属氧载体和复合金属氧载体的研究进展;同时,探讨了几种具有典型代表的甲烷化学链重整反应装置,并指出串行流化床反应器是实现化学链重整技术工业化最有效的装置;最后对化学链重整技术的拓展应用以及与其他技术交叉运用等发展趋势进行了展望。
Chemical looping reforming (CLR) of methane to obtain synthesis gas using lattice oxygen of oxygen carriers instead of molecular oxygen is a novel technology for producing synthesis gas from methane, which has higher economic benefits and environmental benign. CLR has several advantages, such as, saving oxygen generation equipment, capable of self-heating, suitable hydrogen/carbon ratio, useful by-products and realizing industrialization easily, so, it has been growing interest for researchers at home and aboard. Firstly, the basic concept and characteristics of CLR are introduced, which is partial oxidation of methane through controlling the value of lattice oxygen/fuel, thus, the synthesis gas is produced through the gas-solid reaction between methane and oxygen carriers, and the reduced oxygen carriers are re-oxidized by air or H2O to restore its lattice oxygen. Direct contact between fuel and combustion air is avoided in the CLR. Instead, an oxygen carrier performs the task of bringing O2 from the air to the fuel. In particular, it is summarized for the research progress of monometallic and composite metal oxygen carriers. And the same time, several kinds of typical representative reactor in CLR are discussed, among which interconnected fluidized bed reactor will be most effective for CLR to realize industrialization in the future. Finally, the expand application of CLR and the trends coupled with other technology are prospected. Contents 1 Introduction
2 Concept and characteristic of CLR
3 Oxygen carriers in CLR of methane
3.1 Monometallic oxygen carriers
3.2 Composite metal oxygen carriers
4 Reactor design in CLR of methane
5 Expand application of CLR and the trends coupled with other techniques
6 Conclusion

中图分类号: 

()
[1] 李景明(Li J M), 王红岩(Wang H Y), 赵群(Zhao Q). 天然气工业(Natural Gas Industry), 2008, 28(1): 149-153
[2] 国土资源部(Ministry of Land and Resources). 中国矿产资源报告2011(China Mineral Resources Report 2011). 北京: 国土资源部信息中心(Beijing: Information Center of Ministry of Land and Resources), 2011
[3] 冯孝庭(Feng X T). 天然气-宝贵的财富(Natural Gas-Valuable Asset). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2004
[4] 许珊(Xu S), 王晓来(Wang X L), 赵睿(Zhao R). 化学进展(Progress in Chemistry), 2005, 15(2): 141-150
[5] 徐占林(Xu Z L), 毕颖丽(Bi Y L), 甄开吉(Zhen K J). 化学进展(Progress in Chemistry), 2000, 12(2): 121-130
[6] Gao J, Guo J Z, Liang D, Hou Z Y, Fei J H, Zheng X M. Int. J. Hydrogen Energy, 2008, 33: 5493-5500
[7] Hou Z Y, Gao J, Guo J Z, Liang D, Lou H, Zheng X M. Journal of Catalysis, 2007, 250: 331-341
[8] Hou Z Y, Chen P, Fang H L, Zheng X M, Tatsuaki Y. Int. J. Hydrogen Energy, 2006, 31: 555-561
[9] Gao J, Hou Z Y, Liu X S, Zeng Y W, Luo M F, Zheng X M. Int. J. Hydrogen Energy, 2009, 34: 3734-3742
[10] Guo J Z, Gao J, Chen B H, Hou Z Y, Fei J H, Lou H, Zheng X M. Int. J. Hydrogen Energy, 2009, 34: 8905-8911
[11] 姜洪涛(Jiang H T), 李会泉(Li H Q), 张懿(Zhang Y). 化学进展(Progress in Chemistry), 2006, 18(10): 1270-1277
[12] 路勇(Lu Y), 沈师孔(Shen S K). 石油与天然气化工(Chemical Engineering of Oil & Gas), 1997, 26(1): 6-13
[13] 孙长庚(Sun C G), 刘宗章(Liu Z Z), 张敏华(Zhang M H). 化学工业与工程(Chemical Industry and Engineering), 2004, 21(4): 276-280
[14] Santos A, Menendz M, Santamaria J. Catal. Today, 1994, 21(2/3): 481-488
[15] Provendier H, Petit C, Estoums C, Libs S, Kiennemann A. Appl. Catal. A: General, 1999, 180(1/2): 163-173
[16] Elnqasides C, XenoPhon E V. J. Catal., 2001, 203: 477-486
[17] Wang H H, Cong Y, Yang W S. Chinese Science Bulletin, 2002, 47(7): 534-537
[18] 王海涛(Wang H T), 李振花(Li Z H), 田树勋(Tian S X), 何菲(He F). 燃料化学学报(Journal of Fuel Chemistry and Technology), 2004, 32(4): 475-450
[19] Zhu Y R, Li Z H, Zhou Y H, Wang H T. Journal of Natural Gas Chemistry, 2005, 14(l): l-3
[20] Morioka H, ShimizuY, Sukenobu M, Ito K, Tanabe E, Shishido T, Takehira K. Appl. Catal. A: General, 2001, 215(1/2): 11-19
[21] 张兆斌(Zhang Z B), 余长春(Yu C C), 沈师孔(Shen S K). 石油大学学报(自然科学版) (Journal of China University of Petroleum(Edition of Natural Science)), 2002, 24(3): 22-25
[22] 金荣超(Jin R C), 陈燕馨(Chen Y X). 催化学报(Chinese Journal of Catalysis), 1999, 20(3): 267-272
[23] Fathi M, Hofstad H K, SPerie T, Rokstad O A, Holmen A. Catal. Today, 1998, 42: 205-209
[24] Shen S K, Pan Z Y, Dong C Y. Stud. Surf. Sci. Catal., 2001, 136: 99-140
[25] Ryden M, Lyngfelt A. Int. J. Hydrogen Energy, 2006, 31: 1271-1283
[26] Pimenidou P, Rickett G, Duponta V, Twigg M V. Bioresource Technology, 2010, 101(16): 6389-6397
[27] Johansson M, Mattisson T, Lyngfelt A, Abad A. Fuel, 2008, 87(6): 988-1001
[28] Zafar Q, Mattission T, Gevert B. Energy & Fuels, 2006, 20(1): 34-44
[29] Bolhar-Nordenkampf J, Proll T, Kolbitsch P, Hofbauer H. Energy Procedia, 2009, 1(1): 19-25
[30] Richter H J, Knoche K F, Gaggioli R A. Washington: ACS Symposium Series 235, 1983, 71-85
[31] He F, Wang H, Dai Y N. Journal of Natural Gas Chemistry, 2007, 16(2): 155-161
[32] Luis F, de Diego, Ortiz M, Garcia-Labiano F, Adanez J, Abad A, Gayan P. Energy Procedia, 2009, 1(1): 3-10
[33] 李孔斋(Li K Z). 昆明理工大学硕士学位论文(Master Dissertation of Kunming University of Science and Technology), 2007
[34] 王保文(Wang B W). 华中科技大学博士论文(Doctoral Dissertation of Central China University Science and Technology), 2008
[35] Villa R, Cristiani C, Groppi G, Lietti L, Forzatti P, Cornaro U, Rossini S. Journal of Molecular Catalysis A: Chemical, 2003, 204/205: 637-646
[36] Adanez J, de Diego L F, Garcia-Labiano F, Gayan P, Abad A, Palacios M J. Energy & Fuels, 2004, 18(2): 371-377
[37] Ortiz M, Abad A, de Diego L F, García-Labiano F, Gayán P, Adánez J. Int. J. Hydrogen Energy, 2011, 36(16): 9663-9672
[38] Cho P, Mattisson T, Lyngfelt A. Fuel, 2004, 83(9): 1215-1225
[39] He F, Wei Y G, Li H B, Wang H. Energy & Fuels, 2009, 23(4): 2095-2102
[40] Readman J E, Olafsen A, Larring Y, Blom R. Journal of Materials Chemistry, 2005, 15(10): 1931-1937
[41] 秦翠娟(Qing C J), 沈来宏(Shen L H), 肖军(Xiao J), 高正平(Gao Z P). 锅炉技术(Boiler Technology), 2008, 39(5): 64-73
[42] Sedor K E, Hossain M M, de Lasa H I, Chemical Engineering Science, 2008, 63(11): 2994-3007
[43] Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego L F. Progress in Energy and Combustion Science, 2012, 38(2): 215-282
[44] Luis F, Garcia-Labiano F, Gayan P, Celaya J, Palacios J M, Adanez J. Fuel, 2007, 86(7/8): 1036-1045
[45] Mattisson T, Jardnas A, Lyngfelt A. Energy and Fuels, 2003, 17(3): 643-651
[46] Jin H, Okamoto T, Ishida M. Ind. Eng. Chem. Res., 1999, 38(1): 126-132
[47] Wolf J, Anhedenb M, Yan J. Fuel, 2006, 84(7/8): 993-1006
[48] Zafar Q, Mattisson T, Gevert B. Ind. Eng. Chem. Res., 2005, 44(10): 3485-3498
[49] Ryden M, Lyngfelt A, Mattisson T. Energy & Fuels, 2008, 22(4): 2585-2597
[50] Ryden M, Lyngfelt A, Mattisson T. Fuel, 2006, 85(12-13): 1631-1641
[51] de Diego L F, Ortiz M, Adanez J, Garcia-Labiano F. Chemical Engineering Journal, 2008, 144(2): 289-298
[52] de Diego L F, Ortiz M, Garcia-Labiano F, Adánez J, Abad A, Gayán P. Journal of Power Sources, 2009, 192(1): 27-34
[53] Son R S, Kang S G, Sang D K. Ind. Eng. Chem. Res., 2009, 48(1): 380-387
[54] Rahul D S, Veser G. Ind. Eng. Chem. Res., 2010, 49 (21): 11037-11044
[55] Go K S, Son S R, Sang D K, Kang K S, Park C S. Int. J. Hydrogen Energy, 2009, 34(3): 1301-1309
[56] Chiesa P, Lozza G, Malandrino A, Romano M, Piccolo V. Int. J. Hydrogen Energy, 2008, 33(9): 2233-2245
[57] Stobbe E R, de Boer B A, Geus J W. Catalysis Today, 1999, 47(1/4): 161-167
[58] Otsuka K, Sunada E, Ushiyama T. Stud. Surf. Sci. Catal., 1997, 107: 531-542
[59] Otsuka K, Wang Y, Sunada E, Yamanaka I. Journal of Catalysis, 1998, 175(2): 152-160
[60] Fathi M, Bjorgum E, Viig T. Catalysis Today, 2000, 63(2/4): 489-497
[61] 陈懿(Chen Y). 复旦大学学报(自然科学版) (Journal of Fudan University (Natural Science)), 2002, 41(3): 251-259
[62] Zhu X, Wang H, Wei Y G, Li K Z. Cheng X M. Journal of Rare Earths, 2010, 28(6): 907-913
[63] Otsuka K, Wang Y, Nakamura M. Appl. Catal. A, 1999, 183(2): 317-324
[64] Eguchi K, Arai H. Catalysis Today, 1996, 29(1/4): 379-386
[65] Mihai O, Chen D, Holmen A. Ind. Eng. Chem. Res., 2011, 50(5): 2613-2621
[66] 李然家(Li R J), 余长春(Yu C C), 代小平(Dai X P), 沈师孔(Shen S K). 催化学报(Chinese Journal of Catalysis ), 2002, 23(6): 549-554
[67] 李然家(Li R J), 余长春(Yu C C), 朱光荣(Zhu G R), 沈师孔(Shen S K), 张志翔(Zhang Z X). 石油与天然气化工(Chemical Engineering of Oil & Gas), 2004, 33(supply): 5-8
[68] Dai X P, Yu C C, Li R J, Wu Q, Shi K J, Hao Z P. Journal of Rare Earths, 2008, 26(3): 341-346
[69] Rydén M, Lyngfelt A, Mattisson T, Chen D, Holmen A, Bjørgum E. International Journal of Greenhouse Gas Control, 2008, 2(1): 21-36
[70] Dai X P, Yu C C, Li R J, Wu Q. Journal of Natural Gas Chemistry, 2008, 17(4): 415-418
[71] Nalbanidian L, Evdou A, Zaspalis V. Int. J. Hydrogen Energy, 2009, 34(17): 7162-7172
[72] Evdou A, Zaspalis V, Nalbanidian L. Int. J. Hydrogen Energy, 2008, 33(20): 5554-5562
[73] Evdou A, Zaspalis V, Nalbanidian L. Fuel, 2009, 89(6): 1265-1273
[74] Xie Y R, Xiao J, Shen L H, Wang J, Zhu J, Hao J G. Energy and Fuel, 2010, 24(5): 3256-3261
[75] Tian H, Guo Q, Yue X, Liu Y. Fuel Process Technology, 2010, 91(11): 1640-1649
[76] 李君(Li J). 华北电力大学硕士学位论文(Master Dissertation of North China Electric Power University, Beijing), 2009
[77] Lyngfelt A, Leckner B, Mattisson T. Chem. Eng. Science, 2001, 56(10): 3101-3113
[78] Pröll T, Bolhàr-Nordenkampf J, Kolbitsch P, Hofbauer H. Fuel, 2010, 89(6): 1249-1256
[79] Ortiz M, de Diego L F, Abad A, Garcia-Labiano F, Gayan P, Adanez J. Int. J. Hydrogen Energy, 2010, 35(1): 151-160
[80] He F, Huang Z, Li H B, Zhao Z L. Wuhan: APPEEC, 2011
[81] 黄振(Huang Z), 何方(He F), 李海滨(Li H B), 赵增立(Zhao Z L). 燃料化学学报(Journal of Fuel Chemistry and Technology), 2012, 40(3): 300-308
[82] Acharya B, Dutta A, Basu P. Energy and Fuels, 2009, 23(10): 5077-5083
[83] Steinfeld A, Kuhn P, Reller A, Palumbo R, Murray J, Tamaura Y. Int. J. Hydrogen Energy, 1998, 23 (9): 767-774
[84] 李鑫( Li X), 李安定(Li A D), 李斌(Li B), 杨培尧(Yang P Y), 臧春城(Zang C C), 郑飞(Zheng F). 太阳能学报(Acta Energiae Solaris Sinica), 2005, 26(1): 127-133
[85] 李孔斋(Li K Z), 王华(Wang H), 魏永刚(Wei Y G), 敖先权(Ao X Q), 刘明春(Liu M C). 化学进展(Progress in Chemistry), 2008, 20(9): 1306-1314
[86] 黄振(Huang Z), 何方(He F), 赵坤(Zhao K), 赵光杰(Zhao G J), 石化彪(Shi H B), 李海滨(Li H B). 农业工程学报(Transactions of the Chinese Society of Agricultural Engineering), 2011, 27(13): 105-111
[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[3] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[4] 潘迪, 刘鹏, 张宏斌, 唐颐. 沸石的连续流动相合成[J]. 化学进展, 2020, 32(7): 873-881.
[5] 郭华, 张蕾, 董旭, 申刚义, 尹俊发. 固定化多酶级联反应器[J]. 化学进展, 2020, 32(4): 392-405.
[6] 赵婉茹, 胡欣, 朱宁, 方正, 郭凯. 连续流离子聚合[J]. 化学进展, 2018, 30(9): 1330-1340.
[7] 于洪涛, 陈硕, 全燮*, 张振华. 光催化水处理消毒的原理、材料和反应器[J]. 化学进展, 2017, 29(9): 1030-1041.
[8] 卢君颖, 郭禹, 刘其瑞, 韩广智, 王周君. 甲烷二氧化碳重整制合成气钴基催化剂[J]. 化学进展, 2017, 29(12): 1471-1479.
[9] 王晶, 姚楠*. 适用于合成气制甲烷的Ni基催化剂[J]. 化学进展, 2017, 29(12): 1509-1517.
[10] 喻娜, 丁慧敏, 汪成. 有机分子笼的合成及应用[J]. 化学进展, 2016, 28(12): 1721-1731.
[11] 龚晚君, 赵智勇, 刘思敏*. 葫芦脲作为超分子纳米反应器/催化剂的研究[J]. 化学进展, 2016, 28(12): 1732-1742.
[12] 贾思思, 晁洁, 樊春海, 柳华杰. DNA折纸术纳米反应器[J]. 化学进展, 2014, 26(05): 695-705.
[13] 申刚义, 于婉婷, 刘美蓉, 崔勋. 固定化酶微反应器的制备及应用[J]. 化学进展, 2013, 25(07): 1198-1207.
[14] 姜洪涛*, 华炜, 计建炳. 甲烷重整制合成气镍催化剂积炭研究[J]. 化学进展, 2013, 25(05): 859-868.
[15] 王莉, 敖先权*, 王诗瀚. 甲烷与二氧化碳催化重整制取合成气催化剂[J]. 化学进展, 2012, (9): 1696-1706.