English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

基于同步辐射光源研究水热合成纳米氧化物的生长机理

周莹*1,2, 林元华1,2, Greta R. Patzke3   

  1. 1. 西南石油大学油气藏地质及开发工程国家重点实验室 成都 610500;
    2. 西南石油大学材料科学 与工程学院 成都 610500;
    3. 苏黎世大学无机化学所 苏黎世 8057
  • 收稿日期:2011-12-01 修回日期:2012-02-01 出版日期:2012-08-24 发布日期:2012-08-06
  • 通讯作者: 周莹 E-mail:yzhou@swpu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.51102245)、四川省教育厅重点项目(No.11ZA020)和四川省百人计划项目资助

Synchrotron Radiation for the Study of Hydrothermal Formation Mechanisms of Oxide Nanomaterials

Zhou Ying*1,2, Lin Yuanhua1,2, Greta R. Patzke3   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China;
    3. Institute of Inorganic Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
  • Received:2011-12-01 Revised:2012-02-01 Online:2012-08-24 Published:2012-08-06
纳米氧化物的可控制备是提高其应用性能的前提条件。水热反应目前被广泛用于制备纳米氧化物材料,然而由于水热反应是在密闭环境中进行,很难研究前驱体的溶解过程,溶解后在溶液中的配位情况、晶体成核、生长过程以及形成的中间相,因此,难以实现材料的目标制备。同步辐射具有高强度、高亮度、高准直、宽频谱等诸多优点,通过设计和构建特殊的反应装置,可以应用同步辐射光源原位研究纳米氧化物在水热条件下的生长过程。本文结合本课题组及国际的研究工作介绍了原位反应装置的设计原则,以及基于同步辐射光源的原位X射线衍射(XRD)、X射线吸收精细结构谱(XAFS)和小角X射线散射(SAXS)研究纳米氧化物水热生长机理的最新进展,并展望了其发展趋势。
Controlled synthesis of oxide nanomaterials is indispensable to enhance their applications. Recently, hydrothermal methods have been widely applied to synthesize oxide nanomaterials. However, hydrothemal reactions are performed in closed reactor systems. Therefore, it is extremely difficult to investigate the dissolution of precursor, the coordination environment of precursor in solution, nucleation and crystallization process, and the involved intermediates. This is the reason that targeted synthesis of oxide nanomaterials has not been achieved. Synchrotron radiation offers notable analytical advantages for structure elucidation, such as high intensity, high brightness, high collimation and wide tunability in energy/wavelength. Based on the design and construction of specialized in situ reactors, synchrotron radiation can be used to investigate the hydrothermal formation process of oxide nanomaterials. In this paper, the design principle of a hydrothermal in situ reactor is introduced. Moreover, the applications of in situ synchrotron X-ray diffraction (XRD), X-ray absorption fine structure (XAFS) and small-angle X-ray scattering (SAXS) to understand the hydrothermal formation mechanisms and reaction kinetics of oxide nanomaterials are critically reviewed. Furthermore, future trends of in situ techniques based on synchrotron radiation are discussed. Contents 1 Introduction
2 Design of in situ cell
3 Applications of synchrotron radiation
3.1 In situ X-ray diffraction
3.2 In situ X-ray absorption spectroscopy
3.3 In situ small angle X-ray scattering
4 Conclusion and outlook

中图分类号: 

()
[1] 施尔畏(Shi E W), 夏长泰(Xia C T), 王步国(Wang B G), 仲维卓(Zhong W Z). 无机材料学报(Journal of Inorganic Materials), 1996, 11(2): 193-206
[2] Byrappa K, Adschiri T. Prog. Cryst. Growth Charact. Mater., 2007, 53: 117-166
[3] 施尔畏(Shi E W), 陈之战(Chen Z Z), 元如林(Yuan R L), 郑燕青(Zheng Y Q). 水热结晶学(Hydrothermal Crystallography). 北京: 科学出版社(Beijing: Science Press), 2004. 36-67
[4] Yao W T, Yu S H. Int. J. Nanotechnology, 2007, 4: 129-162
[5] Wang X, Li Y D. Pure Appl. Chem., 2006, 78: 45-64
[6] Patzke G R, Zhou Y, Kontic R, Conrad F. Angew. Chem. Int. Ed., 2011, 50: 826-859
[7] 温福宇(Wen F Y), 杨金辉(Yang J H), 宗旭(Zong X), 马艺(Ma Y), 徐倩(Xu Q), 马保军(Ma B J), 李灿(Li C). 化学进展(Progress in Chemistry), 2009, 21(11): 2285-2302
[8] Liu C, Li F, Ma L P, Cheng H M. Adv. Mater., 2010, 22: E28-E62
[9] Byrappa K, Yoshimura M. Hydrothermal Technology A Technology for Crystal Growth and Materials Processing. USA: William Andrew Publishing, 2001. 170-192
[10] Walton R I, O'Hare D. Chem. Commun., 2000, 2283-2291
[11] 刘勇(Liu Y), 周永丰(Zhou Y F), 颜德岳(Yan D Y). 化学进展(Progress in Chemistry), 2010, 22(6): 1177-1184
[12] 严佳萍(Yan J P), 邵正中(Shao Z Z), 陈新(Chen X). 化学进展(Progress in Chemistry), 2008, 20(11): 1768-1778
[13] 马礼敦(Ma L D), 杨福家(Yang F J). 同步辐射应用概论(Introduction to Synchrotron Radiation Applications). 上海: 复旦大学出版社(Shanghai: Fudan University Press), 2005. 260-262
[14] Jacques S D M, Leynaud O, Strusevich D, Stukas P, Barnes P, Sankar G, Sheehy M, O'Brien M G, Iglesias-Juez A, Beale A M. Catal. Today, 2009, 145: 204-212
[15] Norby P, Christensen A N, Hanson J C. Stud. Surf. Sci. Catal., 1994, 84: 179-186
[16] Becker J, Bremholm M, Tyrsted C, Pauw B, Jensen K M, Eltzholt J, Christensen M, Iversen B B. J. Appl. Cryst., 2010, 43: 729-736
[17] Grunwaldt J D, Caravati M, Hannemann S, Baiker A. Phys. Chem. Chem. Phys., 2004, 6: 3037-3047
[18] Grunwaldt J D, van Vegten N, Baiker A. Chem. Commun., 2007, 4635-4637
[19] Grunwaldt J D, Ramin M, Rohr M, Michailovski A, Patzke G R, Baiker A. Rev. Sci. Instrum., 2005, 76: art. no. 054104
[20] Puxley D C, Squire G D, Bates D R. J. Appl. Crystallogr., 1994, 27: 585-594
[21] Rathousky J, Schulz-Ekloff G, Zukal H J. Phys. Chem. Chem Phys., 1999, 1: 3053-3057
[22] Evans J S O, Evans I R. Chem. Soc. Rev., 2004, 33: 539-547
[23] Walton R I, Norquist A, Smith R I, O'Hare D. Faraday Discuss., 2002, 122: 331-341
[24] Shen X F, Ding Y S, Hanson J C, Aindow M, Suib S L. J. Am. Chem. Soc., 2006, 128: 4570-4571
[25] Gao T, Fjellvåg H, Norby P. Nanotechnology, 2009, 20: art. no. 055610
[26] Bremholm M, Becker-Christensen J, Iversen B. Adv. Mater., 2009, 21: 3572-3575
[27] Jensen H, Bremholm M, Nielsen R P, Joensen K D, Pedersen J S, Birkedal H, Chen Y S, Almer J, Søgaard E G, Iversen S B, Iversen B B. Angew. Chem. Int. Ed., 2007, 46: 1113-1116
[28] Evans J S O, Francis R J, O'Hare D, Price S J, Clarke S M, Flaherty J, Gordon J, Nield A, Tang C C. Rev. Sci. Instrum., 1995, 66: 2442-2445
[29] Francis R J, Price S J, Evans J S O, O'Brien S, O'Hare D, Clark S M. Chem. Mater., 1996, 8: 2102-2108
[30] Francis R J, O'Brien S, Fogg A M, Halasyamani P S, O'Hare D, Loiseau T, Férey G. J. Am. Chem. Soc., 1999, 121: 1002-1015
[31] Rehan M, Lai X J, Kale G M. CrystEngComm, 2011, 13: 3725-3732
[32] Engelke L, Schaefer M, Schur M, Bensch W. Chem. Mater., 2001, 13: 1383-1390
[33] Michailovski A, Grunwaldt J D, Baiker A, Kiebach R, Bensch W, Patzke G R. Angew. Chem. Int. Ed., 2005, 44: 5643-5647
[34] Kiebach R, Pienack N, Bensch W, Grunwaldt J D, Michailovski A, Baiker A, Fox T, Zhou Y, Patzke G R. Chem. Mater., 2008, 20: 3022-3033
[35] Michailovski A, Kiebach R, Bensch W, Grunwaldt J D, Baiker A, Komarneni S, Patzke G R. Chem. Mater., 2007, 19: 185-197
[36] Zhou Y, Pienack N, Bensch W, Patzke G R. Small, 2009, 5: 1978-1983
[37] Zhou Y, Antonova E, Bensch W, Patzke G R. Nanoscale, 2010, 2: 2412-2417
[38] Zhou Y, Vuille K, Heel A, Patzke G R. Z. Anorg. Allg. Chem., 2009, 635: 1848-1855
[39] Zheng K B, Zhou Y, Gu L L, Mo X L, Patzke G R, Chen G R. Sens. Actuators B, 2010, 148: 240-246
[40] Zhou Y, Antonova E, Lin Y H, Grunwaldt J D, Bensch W, Patzke G R. Eur. J. Inorg. Chem., 2012, 783-789
[41] Walton R I, Munn A S, Guillou N, Millange F. Chem. Eur. J., 2011, 17: 7069-7079
[42] Millange F, Serre C, Guillou N, Ferey G, Walton R I. Angew. Chem. Int. Ed., 2008, 47: 4100-4105
[43] Millange F, Medina M I, Guillou N, Ferey G, Golden K M, Walton R I. Angew. Chem. Int. Ed., 2010, 49: 763-766
[44] 曲颖(Qu Y), 李玉锋(Li Y F), 陈春英(Chen C Y). 化学进展(Progress in Chemistry), 2011, 23(7): 1534-1546
[45] Newton M A, Dent A J, Evans J. Chem. Soc. Rev., 2002, 31: 83-95
[46] Rehr J J, Albers R C. Rev. Mod. Phys., 2000, 72: 621-654
[47] Kongmark C, Martis V, Rubbens A, Pirovano C, Lofberg A, Sankar G, Bordes-Richard E, Vannier R N, van Beek W. Chem. Commun., 2009, 4850-4852
[48] Jeong E S, Han S W, Vayssieres L. 2nd IEEE International Nanoelectronics Conference. Shanghai: IEEE, 2008, 1/3: 1099-1101
[49] Patzke G R, Michailovski A, Krumeich F, Nesper R, Grunwaldt J D, Baiker A. Chem. Mater., 2004, 16: 1126-1134
[50] Zhou Y, Grunwaldt J D, Krumeich F, Zheng K B, Chen G R, Stötzel J, Frahm R, Patzke G R. Small, 2010, 6: 1173-1179
[51] Zhou Y, Patzke G R. CrystEngComm, 2012, 14: 1161-1163
[52] 朱育评(Zhu Y P). 小角X射线散射: 理论、测试、计算及应用(Small Angle X-ray Scattering: Theory, Measurement, Calculation and Applications). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2008. 1-8
[53] Rao C N R, Biswas K. Annu. Rev. Anal. Chem., 2009, 2: 435-462
[54] Biswas K, Varghese N, Rao C N R. J. Mater. Sci. Technol., 2008, 24: 615-627
[55] Biswas K, Das B, Rao C N R. J. Phys. Chem. C, 2008, 112: 2404-2411
[56] Viswanatha R, Amenitsch H, Sarma D D. J. Am. Chem. Soc., 2006, 129: 4470-4475
[57] Beale A M, van der Eerden A M J, Jacques S D M, Leynaud O, O'Brien M G, Meneau F, Nikitenko S, Bras W, Weckhuysen B M. J. Am. Chem. Soc., 2006, 128: 12386-12387
[58] Bremholm M, Felicissimo M, Iversen B B. Angew. Chem. Int. Ed., 2009, 48: 4788-4791
[59] Fan F, Feng Z, Li C. Acc. Chem. Res., 2010, 43: 378-387
[60] Garnweitner G, Grote C. Phys. Chem. Chem. Phys., 2009, 11: 3767-3774
[61] Viswanatha R, Santra P K, Dasgupta C, Sarma D D. Phys. Rev. Lett., 2007, 98: art. no. 255501
[62] Lizandara-Pueyo C, van den Berg M W E, De Toni A, Goes T, Polarz S. J. Am. Chem. Soc., 2008, 130: 16601-16610
[1] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[2] 高露莎, 李婧汶, 宗慧, 刘千玉, 胡凡生, 陈接胜. 水热体系中的凝聚态及化学反应[J]. 化学进展, 2022, 34(7): 1492-1508.
[3] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[4] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.
[5] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[6] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[7] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[8] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[9] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[10] 黄辉, 陈俊, 卢会茹, 周梦雪, 胡毅, 柴之芳. 帕金森病中的关键金属元素[J]. 化学进展, 2018, 30(10): 1592-1600.
[11] 葛明, 李振路. 基于银系半导体材料的全固态Z型光催化体系[J]. 化学进展, 2017, 29(8): 846-858.
[12] 沈晓骏, 黄攀丽, 文甲龙, 孙润仓. 木质素氧化还原解聚研究现状[J]. 化学进展, 2017, 29(1): 162-178.
[13] 姚臻, 戴博恩, 于云飞, 曹堃. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062-1069.
[14] 赵艳霞, 何圣贵. 异核氧化物团簇与小分子的反应研究[J]. 化学进展, 2016, 28(4): 401-414.
[15] 花东龙, 庄晓煜, 童东绅, 俞卫华, 周春晖. 催化甘油脱水氧化连串反应制丙烯酸[J]. 化学进展, 2016, 28(2/3): 375-390.