English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

PVC膜离子选择电极检测下限的优化

黄美荣, 丁永波, 李新贵*   

  1. 同济大学材料科学与工程学院 先进土木工程材料教育部重点实验室 材料化学研究所 上海 200092
  • 收稿日期:2011-11-01 修回日期:2012-02-01 出版日期:2012-08-24 发布日期:2012-08-06
  • 通讯作者: 李新贵 E-mail:adamxgli@yahoo.com
  • 基金资助:

    国家自然科学基金项目(No.20974080)资助

Improvement of Lower Detection Limit of Ion-Selective Electrodes Based on PVC Membrane

Huang Meirong, Ding Yongbo, Li Xingui   

  1. Institute of Materials Chemistry, Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, College of Materials Science and Engineering, Tongji University, Shanghai 200092, China
  • Received:2011-11-01 Revised:2012-02-01 Online:2012-08-24 Published:2012-08-06
价格低廉、携带方便、适用浓度宽、操作简单快捷、能耗低的离子选择电极在医院、分析实验室、野外等领域得到了越来越广泛的应用。尽管如此,由于PVC膜中存在的离子流严重破坏了更低检测下限的获取,限制了离子选择电极的进一步发展。因此,本文从减小甚至消除PVC膜中存在的离子流角度出发,系统论述了优化PVC膜离子选择电极检测下限的原理和优良策略,根据收集归纳的大量数据定量阐述传感膜组成的优化、电极组装和调制、应用旋转电极以及电流极化处理等对检测下限的优化提升作用,进一步总结出各种方法的改善规律,分析它们的优势和面临的问题。提出在PVC铸膜液中要突破传统配方,减小增塑剂和离子交换剂用量,以抑制传感膜两侧的离子流,同时外加电流补偿处理等也是降低电极检测下限的有效方法,对检测下限的改善最好的可降低5个数量级。这一总结为PVC膜离子选择电极的高性能化明确了研究方向。
Ion-selective electrodes (ISEs) based on polymeric membranes are characterized by small size, portability, low-energy consumption, and low cost, which are attractive features concerning practical applications. However, the lower detection limit is biased by the ion flux through PVC membrane, which limits the further development of ion-selective electrode. Therefore, the principles and attractive strategies to suppress such an ion flux to improve the lower detection limit of PVC membrane-based ion-selective electrodes are elaborated in this article. According to large amounts of data collected, the improvement of the detection limit via optimization of sensing membrane composition, electrode assembly and conditioning, electrode rotation, as well as current-polarized treatment, is quantitatively discussed. Furthermore, the modification regulations for expanding the lower detection limit are systematically summarized. The significant superiority and problems are analyzed. It is pointed out that we have to break the conventional PVC composition formulation via reducing the dosages of plasticizer and ion exchanger in order to largely depress the transmembrane ion flux. External-current application to the electrode is also an effective approach, among which, the best improvement for the lower detection limit can reach up to 5 orders of magnitude. This review reveals the future direction for developing the PVC membrane-based ion-selective electrodes with high performance. Contents 1 Introduction
2 Composition optimization of sensing membrane
2.1 Dosage decrease of plasticizer
2.2 Dosage optimization of ionophore
2.3 Dosage decrease of ion exchanger
2.4 Incorporation of lipophilic silica gel microparticle
3 Thickness increase of sensing membrane
4 Optimization of condition solution
5 Agitating sample solution or rotating electrode
6 Application of external current
7 Conclusion and outlook

中图分类号: 

()
[1] Huang M R, Ma X L, Li X G. Chin. Sci. Bull., 2008, 53(21): 3255-3266
[2] Huang M R, Rao X W, Li X G. Chin. J. Anal. Chem., 2008, 36(12): 1735-1741
[3] Ion I, Culetu A, Costa J, Luca C, Ion A C. Desalination, 2010, 259 (1/3): 38-43
[4] Szigeti Z, Malon A, Vigassy T, Csokai V, Grün A, Wygladacz K, Ye N, Xu C, Chebny V J, Bitter I, Rathore R, Bakker E, Pretsch E. Anal. Chim. Acta, 2006, 572(1): 1-10
[5] Bedlechowicz I, Maj-Zurawska M, Sokalski T, Hulanicki A. J. Electroanal. Chem., 2002, 537(1/2): 111-118
[6] 张军(Zhang J), 赵月前(Zhao Y Q), 丁家旺(Ding J W), 秦伟(Qing W). 分析测试学报(J. Instrumental Anal. ), 2011, 30(2): 207-212
[7] Mahajan R K, Sood P. Int. J. Electrochem. Sci., 2007, 2: 832-847
[8] Ceresa A, Sokalski T, Pretsch E. J. Electroanal. Chem., 2001, 501(1/2): 70-76
[9] Li X G, Ma X L, Huang M R. Talanta, 2009, 78(2): 498-505
[10] Mashhadizadeh M H. Taheri E P, Sheikhshoaie I. Talanta, 2007, 72 (3): 1088-1092
[11] 吕鉴泉(Lv J Q), 曾宪顺(Zeng X S), 艾娟(Ai J), 庞代文(Pang D W). 高等学校化学学报(Chem. J. Chin. Univ. ), 2005, 26(2): 238-240
[12] 薛富(Xue F), 李民君(Li M J), 季玉祥(Ji Y X), 张军(Zhang J). 化学试剂, 2011, 33(9): 837-840
[13] Wilson D, Arada M A, Alegret S, Valle M. J. Hazard. Mater., 2010, 181(1/3): 140-146
[14] Bochenska M, Guzinski M, Kulesza J. Electroanalysis, 2009, 21 (17/18): 2054-2060
[15] Long R, Bakker E. Anal. Chim. Acta, 2004, 511 (1): 91-95
[16] Arvand M, Asadollahzadeh S A. Talanta, 2008, 75(4): 1046-1054
[17] Zanjanchi M A, Arvand M, Islamnezhad A, Mahmoodi N O. Talanta, 2007, 74 (1): 125-131
[18] Ganjali M R, Hosseini M, Basiripour F, Javanbakht M, Hashemi O R, Rastegar M F, Shamsipur M, Buchanen G W. Anal. Chim. Acta, 2002, 464(2): 181-186
[19] Huang M R, Rao X W, Li X G, Ding Y B. Talanta, 2011, 85(3): 1575-1584
[20] Alizadeh N, Ershad S, Naeimi H, Sharghi H, Shamsipur M. Fresenius J. Anal. Chem., 1999, 365 (6): 511-515
[21] 李光华(Li G H), 丁国华(Ding G H). 化学通报(Chem. Bull. ), 2011, 74(9): 853-856
[22] Elmosallamy M A F, Fathy A M, Ghoneim A K. Electroanalysis, 2008, 20(11): 1241-1245
[23] Kazemia S Y, Shamsipur M, Sharghi H. J. Hazard. Mater., 2009, 172(1): 68-73
[24] Rizk N M H, Abbas S S, Hamza S M, EL-Karem Y M A. Sensors, 2009, 9(3): 1860-1875
[25] Mittal S K, Kumar A, Gupta N, Kaur S, Kumar S. Anal. Chim. Acta, 2007, 585(1): 161-170
[26] Bakker E, Pretsch E. Anal. Chim. Acta, 1995, 309(1/3): 7-17
[27] Zwickl T, Sokalski T, Pretsch E. Electroanalysis, 1999, 11 (10/11): 673-680
[28] Radu A, Peper S, Bakker E, Diamond D. Electroanalysis, 2007, 19(2/3): 144-154
[29] Telting-Diaz M, Bakker E. Anal. Chem., 2001, 73 (22): 5582-5589
[30] Sokalski T, Bedlechowicz I, Maj-Zurawska M, Hulanicki A. Fresenius J. Anal. Chem., 2001, 370 (4): 367-370
[31] 颜振宁(Yan Z N), 李利勤(Li L Q), 赵邦屯(Zhao B T). 分析化学(Chin. J. Anal. Chem. ), 2008, 36 (3): 339-342
[32] Bakker E, Buhlmann P, Pretsch E. Chem. Rev., 1997, 97 (8): 3083-3132
[33] Peper S, Qin Y, Almond P, McKee M, Telting-Diaz M, Albrecht-Schmitt T, Bakker E. Anal. Chem., 2003, 75 (9): 2131-2139
[34] Vigassy T, Gyurcsányi R E, Pretsch E. Electroanalysis, 2003, 15(5/6): 375-382
[35] Thurer R, Vigassy T, Hirayama M, Pretsch E. Chem. Anal., 2006, 51 (6): 869-878
[36] Michalska A, Ocypa M, Maksymiuk K. Electroanalysis, 2005, 17(4): 327-333
[37] Lindner E, Gyurcsányi R E, Buck R P. Electroanalysis, 1999, 11(10/11): 695-702
[38] Radu A, Telting-Diaz M, Bakker E. Anal. Chem., 2003, 75 (24): 6922-6931
[39] Vigassy T, Gyurcsányi R E, Pretsch E. Electroanalysis, 2003, 15 (15/16): 1270-1275
[40] Pergel E, Gyurcsányi R E, Tóth K, Lindner E. Anal. Chem., 2001, 73(17): 4249-4253
[41] Peshkova M A, Mikhel'son K N. Russ. J. Electrochem., 2010, 46 (11): 1331-1337
[42] Bedlechowicz I, Sokalski T, Lewenstam A, Maj-zurawska M. Sensors and Actuators B, 2005, 108 (1/2): 836-839
[43] Peshkova M A, Sokalski T, Mikhelson K N, Lewenstam A. Anal. Chem., 2008, 80 (23): 9181-9187
[44] Hofler L, Bedlechowicz I, Vigassy T, Gyurcsnyi R E, Bakker E, Pretsch E. Anal. Chem., 2009, 81 (9): 3592-3599
[45] Michalska A. Electroanalysis, 2005, 17(5/6): 400-407
[46] Pawowski P, Kisiel A, Michalska A, Maksymiuk K. Talanta, 2011, 84(3): 814-819
[47] Pawlowski P, Michalska A, Maksymiuk K. Electroanalysis, 2006, 18(13/14): 1339-1346
[48] Zook J M, Lindner E. Anal. Chem., 2009, 81 (13): 5146-5154
[49] Zook J M, Lindner E. Anal. Chem., 2009, 81 (13): 5155-5164
[50] Ding J W, Qin W. J. Am. Chem. Soc., 2009, 131 (41): 14640-14641
[51] Li X G, Feng H, Huang M R, Gu G L, Moloney M G. Anal. Chem., 2012, 84(1): 134-140
[52] Coldur F, Andac M, Isildak I, Saka T. J. Electroanal. Chem., 2009, 626(1/2): 30-35
[53] Huang M R, Gu G L, Shi F Y, Li X G. Chin. J. Anal. Chem., 2012, 40(1): 50-58
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[4] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[5] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[6] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[7] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[8] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[9] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[10] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[11] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[12] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[13] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[14] 赵静, 王子娅, 莫黎昕, 孟祥有, 李路海, 彭争春. 微结构化柔性压力传感器的性能增强机制、实现方法与应用优势[J]. 化学进展, 2022, 34(10): 2202-2221.
[15] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.