English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

氧化石墨烯荧光传感器

张昊*1, 崔华2   

  1. 1. 蒸汽动力系统实验室 武汉第二船舶设计研究所 武汉 430064;
    2. 中国科学院软物质化学重点实验室 中国科学技术大学化学与材料科学学院 合肥 230026
  • 收稿日期:2011-10-01 修回日期:2011-11-01 出版日期:2012-08-24 发布日期:2012-08-06
  • 通讯作者: 张昊 E-mail:zhanghao@mail.ustc.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20625517, 20573101)资助

Fluorescent Sensors Based on Graphene Oxide

Zhang Hao1, Cui Hua2   

  1. 1. Laboratory on Steam Power System, Wuhan Secondary Ship Design & Research Institute, Wuhan 430064, China;
    2. CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
  • Received:2011-10-01 Revised:2011-11-01 Online:2012-08-24 Published:2012-08-06
氧化石墨烯因其独特的光学、表面、机械、电学及热学性质在诸多领域都具有良好的应用前景。利用氧化石墨烯能够有效猝灭荧光体(染料分子、量子点及上转换纳米材料)荧光的特性,结合相关生物分析技术,相继开发了各种荧光传感器。本文综述近年来氧化石墨烯荧光传感器的基本原理及研究进展,主要讨论氧化石墨烯荧光传感器在重金属离子、DNA、蛋白质及生物小分子的分析应用,并对该领域的应用前景进行了展望。
Graphene oxide has great application prospect in many fields due to its unique optical, high surface area, exceptional electronic, thermal and mechanical properties. Taking advantage of the property that graphene oxide can effectively quench the fluorescence of fluorophor including dye, quantum dot and upconversion nanophosphors and various bioanalytical technology, many fluorescent sensors have been developed. In this review, we summarized the principle of fluorescent sensors based on graphene oxide and their application in heavy metallic ion, DNA, protein and small bio-molecule. Moreover, the trends and future perspectives in this research area are also briefly discussed. Contents 1 Introduction
2 Structural characteristic of graphene oxide
3 Application of graphene oxide in fluorescent sensors
3.1 Metal ion fluorescent sensors
3.2 DNA fluorescent sensors
3.3 Protein fluorescent sensors
3.4 Bio-species fluorescent sensors
4 Conclusion and outlook

中图分类号: 

()
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666-669.
[2] 徐秀娟(Xu X J),秦金贵(Qin J G),李振(Li Z). 化学进展(Progress in Chemistry), 2009, 21: 2559-2567
[3] Xu J, Huang J, Li J, Yan J, Qin J, Li Z. Chem. Commun., 2011, 47: 12385-12387
[4] Guo S, Dong S. TRAC-Trend. Anal. Chem., 2009, 28: 96-109
[5] Yanase Y, Araki A, Suzuki H, Tsutsui T, Okamoto K, Nakatani T, Hiragun T, Hide M. Biosen. Bioelectron., 2010, 25: 1244-1247
[6] Sadek A S, Karabalin R B, Du J, Roukes M L, Koch C, Masmanidis S C. Nano Lett., 2010, 10: 1769-1773
[7] Domaille D W, Zeng L, Chang C J. J. Am. Chem. Soc., 2010, 132: 1194-1195
[8] He H, Riedl T, Lerf A, Klinowski J. J. Phys. Chem., 1996, 100: 19954-19958
[9] Rojas S F, Ojeda C B. Anal. Chim. Acta, 2009, 635: 22-44
[10] Zhao X, Song N, Jia Q, Zhou W. Microchim. Acta, 2009, 166: 329-335
[11] Yamini Y, Rezaee M, Khanchi A, Faraji M, Saleh A. J. Chromatogr. A, 2010, 1217: 2358-2364
[12] Wen Y, Peng C, Li D, Zhuo L, He S, Wang L, Huang Q, Xu Q, Fan C. Chem. Commun., 2011, 47: 4661-4663
[13] Zhao X H, Kong R M, Zhang X B, Meng H M, Liu W N, Tan W, Shen G L, Yu R Q. Anal. Chem., 2011, 5062-5066
[14] Liu M, Zhao H, Chen S, Yu H, Zhang Y, Quan X. Biosen. Bioelectron., 2011, 4111-4116
[15] Wen Y, Xing F, He S, Song S, Wang L, Long Y, Fan C. Chem. Commun., 2010, 46: 2596-2598
[16] Kong L, Wang J, Zheng G, Liu J. Chem. Commun., 2011, 47: 10389-10391
[17] Lu C H, Yang H H, Zhu C L, Chen X, Chen G N. Angew. Chem., 2009, 121: 4879-4881
[18] Lu C H, Li J, Liu J J, Yang H H, Chen X, Chen G N. Chem.-Eur. J., 2010, 16: 4889-4894
[19] Li F, Huang Y, Yang Q, Zhong Z, Wang L, Song S, Fan C. Nanoscale, 2010, 2: 1021-1026
[20] He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fan C. Adv. Func. Mater., 2010, 20: 453-459
[21] Dong H, Gao W, Yan F, Ji H, Ju H. Anal. Chem., 2010, 82: 5511-5517
[22] Wu C, Zhou Y, Miao X, Ling L. Analyst, 2011, 136: 2106-2110
[23] Balapanuru J, Yang J X, Xiao S, Bao Q, Jahan M, Polavarapu L, Wei J, Xu Q H, Loh K P. Angew. Chem., 2010, 122: 6699-6703
[24] Jung J H, Cheon D S, Liu F, Lee K B, Seo T S. Angew. Chem., 2010, 122: 5844-5847
[25] Liu M, Zhao H, Quan X, Chen S, Fan X. Chem. Commun., 2010, 46: 7909-7911
[26] Chen Q, Wei W, Lin J M. Biosen. Bioelectron., 2011, 26: 4497-4502
[27] Chang H, Tang L, Wang Y, Jiang J, Li J. Anal. Chem., 2010, 82: 2341-2346
[28] Jang H, Kim Y K, Kwon H M, Yeo W S, Kim D E, Min D H. Angew. Chem., 2010, 122: 5839-5843
[29] Wu W, Hu H, Li F, Wang L, Gao J, Lu J, Fan C. Chem. Commun., 2011, 47: 1201-1203
[30] Lu C H, Li J, Qi X J, Song X R, Yang H H, Chen X, Chen G N. J. Mater. Chem., 2011, 21: 10915-10919
[31] Bhunia S K, Jana N R. ACS Appl. Mater. Inter., 2011, 3(9):3335-3341
[32] Lu C H. Li J. Lin M H. Wang Y W, Yang H H, Chen X, Chen G N. Angew. Chem., 2010, 122: 8632-8635
[33] Liu C, Wang Z, Jia H, Li Z. Chem. Commun., 2011, 47: 4661-4663
[34] Zhang C, Yuan Y, Zhang S, Wang Y, Liu Z. Angew. Chem., 2011, 50: 6851-6854
[35] Sheng L, Ren J, Miao Y, Wang J, Wang E. Biosen. Bioelectron., 2011, 26: 3494-3499
[36] Wei W, Qu K, Ren J, Qu X. Chem. Sci., 2011, 2: 2050-2056
[37] Shi Y, Huang W T, Luo H Q, Li N B. Chem. Commun., 2011, 47: 4676-4678.
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[4] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[5] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[6] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[7] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[8] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[9] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[12] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[13] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[14] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[15] 田浩, 李子木, 汪长征, 许萍, 徐守芳. 分子印迹荧光传感构建及应用[J]. 化学进展, 2022, 34(3): 593-608.
阅读次数
全文


摘要

氧化石墨烯荧光传感器