English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

微流控芯片测定单细胞内化学组分的进展

郝丽1, 徐春秀2, 程和勇2, 刘金华1, 殷学锋*1,2   

  1. 1. 杭州师范大学材料与化学化工学院 杭州 310036;
    2. 浙江大学化学系微分析系统研究所 杭州 310027
  • 收稿日期:2011-10-01 修回日期:2011-12-01 出版日期:2012-08-24 发布日期:2012-08-06
  • 通讯作者: 殷学锋 E-mail:yinxf@zju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21075110,20890020)和杭州钱江特聘学者基金项目(No.HZ 2010-41)资助

Recent Advances in the Determination of Intracellular Contents in Individual Cells Using Microfluidic Devices

Hao Li1, Xu Chunxiu2, Cheng Heyong2, Liu Jinhua1, Yin Xuefeng1,2   

  1. 1. College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China;
    2. Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
  • Received:2011-10-01 Revised:2011-12-01 Online:2012-08-24 Published:2012-08-06
细胞是生命的基本单元。由于细胞的个体差异,传统分析群体细胞的方法难以得到单细胞的重要信息。准确可靠地测定单细胞内化学组分的含量能大大提高从正常细胞中辨别不正常细胞的能力,为进一步研究和发展生物化学、医学和临床检验等领域奠定基础。近年来,用微流控芯片进行单细胞分析已引起广泛的兴趣。微流控芯片可以集成单细胞进样、溶膜、电泳分离胞内化学组分和高灵敏度测定等一系列操作步骤,为分析单细胞内的化学组分提供了新的技术平台。本文主要综述了近年来微流控芯片测定单细胞内化学组分的进展。重点在于利用电渗流、压力结合电渗流和激光镊子等技术操控单细胞在微流控芯片上完成单细胞进样、溶膜、细胞内化学组分的电泳分离和高灵敏度测定等一系列操作步骤。对在微流控芯片上的衍生技术也做了较为详细的阐述。
Cells are the fundamental unit of life. Owing to cellular heterogeneity, traditional biochemical assays which analyze cells in bulk often overlook the rich information available when single cells are studied. Accurate and reliable determination of the chemical composition in individual cells would greatly improve the probability of discriminating infected cells from healthy ones and provide a solid foundation on study and development in various fields including biochemistry, medicine, and pathology clinic. Microfluidic chip system for single-cell analysis is now attracting broad interests. The ability of integrating the whole process on one microfluidic chip, including single cell injection, lysis, separation and detection of cellular constituents by chip-based CE, offers a new technical platform for single cell analysis. This article provides a review on recent advances in determining intracellular contents in individual cells using microfluidic devices. Focus areas include on-chip single cell manipulation by means of electroosmotic flow (EOF), pressure-driven flow combined with EOF and optical tweezer (OT) to perform sequentially single cell injection, lysis, separation and detection of cellular constituents by chip-based CE with highly sensitive detection. The approaches on on-chip derivatization are also addressed. Contents 1 Introduction
2 On-chip single cell manipulation by means of electroosmotic flow (EOF)
3 On-chip single cell manipulation by means of pressure-driven flow combined with EOF
4 On-chip single cell manipulation by optical tweezer
5 On-chip cells derivatization
6 Conclusions and outlook

中图分类号: 

()
[1] Zare R N, Kim S. Annu. Rev. Biomed. Eng., 2010, 12: 187-201
[2] Sims C E, Allbritton N L. Lab Chip, 2007, 7: 423-440
[3] Cohen D, Dickerson J A, Whitmore C D, Turner E H, Palcic M M, Hindsgaul O, Dovichi N J. Annu. Rev. Anal. Chem., 2008, 1: 165-190
[4] Borland L M, Kottegoda S, Phillips K S, Allbritton N L. Annu. Rev. Anal. Chem., 2008, 1: 191-227
[5] Huang W H, Ai F, Wang Z L, Cheng J K. J. Chromatogr. B, 2008, 866: 104-122
[6] 邓彬(Deng B), 徐见容(Xu J R), 汪志明(Wang Z M), 肖玉秀(Xiao Y X). 化学进展(Progress in Chemistry), 2010, 22: 2215-2223
[7] 程介克(Cheng J K). 单细胞分析(Single-Cell Analysis). 北京: 科学出版社(Beijing: Science Press), 2005
[8] Lin Y Q, Trouillon R, Safina G, Ewing A G. Anal. Chem., 2011, 83: 4369-4392
[9] El-Ali J, Sorger P K, Jensen K F. Nature, 2006, 442: 403-411
[10] Yi C Q, Li C W, Ji S L, Yang M S. Anal. Chim. Acta, 2006, 560: 1-23
[11] Yi C Q, Zhang Q, Li C W, Yang J, Zhao J L, Yang M S. Anal. Bioanal. Chem., 2006, 384: 1259-1268
[12] Li P C H, Harrison D J. Anal. Chem., 1997, 69: 1564-1568
[13] Xia F Q, Jin W R, Yin X F, Fang Z L. J. Chromatogr. A, 2005, 1063: 227-233
[14] Shi B X, Huang W H, Cheng J K. Electrophoresis, 2007, 28: 1595-1600
[15] Cheng H, Huang W H, Chen R S, Wang Z L, Cheng J K. Electrophoresis, 2007, 28: 1579-1586
[16] Mellors J S, Jorabchi K, Smith L M, Ramsey J M. Anal. Chem., 2010, 82: 967-973
[17] Chen Z Z, Li Q L, Wang X, Wang Z Y, Zhang R R, Yin M, Yin L L, Xu K H, Tang B. Anal. Chem., 2010, 82: 2006-2012.
[18] McClain M A, Culbertson C T, Jacobson S C, Allbritton N L, Sims C E, Ramsey J M. Anal. Chem., 2003, 75: 5646-5655
[19] Phillips K S, Lai H H, Johnson E, Sims C E, Allbritton N L. Lab Chip, 2011, 11: 1333-1341
[20] Klepárník K, Horky M. Electrophoresis, 2003, 24: 3778-3783
[21] Gao J, Yin X F, Fang Z L. Lab Chip, 2004, 4: 47-52
[22] Ling Y Y, Yin X F, Fang Z L. Electrophoresis, 2005, 26: 4759-4766
[23] Sun Y, Yin X F. J. Chromatogr. A, 2006, 1117: 228-233
[24] Zhu L L, Lu M, Yin X F. Talanta, 2008, 75: 1227-1233
[25] Yu L F, Huang H Q, Dong X L, Wu D P, Qin J H, Lin B C. Electrophoresis, 2008, 29: 5055-5060
[26] Xu C X, Yin X F. J. Chromatogr. A, 2011, 1218: 726-732
[27] Xu C X, Wang M, Yin X F. Analyst, 2011, 136: 3877-3883
[28] Wang H Y, Lu C. Chem. Commun., 2006, 3528-3530
[29] Munce N R, Li J Z, Herman P R, Lilge L. Anal. Chem., 2004, 76: 4983-4989
[30] Hellmich W, Pelargus C, Leffhalm K, Ros A, Anselmetti D. Electrophoresis, 2005, 26: 3689-3696
[31] Ros A, Hellmich W, Regtmeier J, Duong T T, Anselmetti D. Electrophoresis, 2006, 27: 2651-2658
[32] Hellmich W, Greif D, Pelargus C, Anselmetti D, Ros A. J. Chromatogr. A, 2006, 1130: 195-200
[33] Greif D, Galla L, Ros A, Anselmetti D. J. Chromatogr. A, 2008, 1206: 83-88
[34] Hogan B L, Yeung E S. Anal. Chem., 1992, 64: 284l-2845
[35] Wu H K, Wheeler A, Zare R N. Proc. Natl. Acad. Sci. USA, 2004, 101: 12809-12813
[36] Huang B, Wu H K, Bhaya D, Grossman A, Granier S, Kobilka B K, Zare R N. Science, 2007, 315: 81-84
[37] Zhao S L, Li X T, Liu Y M. Anal. Chem., 2009, 81: 3873-3878
[38] Zhao S L, Huang Y, Shi M, Liu R J, Liu Y M. Anal. Chem., 2010, 82: 2036-2041
[39] Zhao S L, Huang Y, Liu Y M. J. Chromatogr. A, 2009, 1216: 6746-6751
[40] Ye F G, Huang Y, Xu Q, Shi M, Zhao S L. Electrophoresis, 2010, 31: 1630-1636
[41] Zhao S L, Huang Y, Ye F G, Shi M, Liu Y M. J. Chromatogr. A, 2010, 1217: 5732-5736
[42] Dishinger J F, Reid K R, Kennedy R T. Anal. Chem., 2009, 81: 3119-3127
[43] Reid K R, Kennedy R T. Anal. Chem., 2009, 81: 6837-6842
[44] Godwin L A, Pilkerton M E, Deal K S, Wanders D, Judd R L, Easley C J. Anal. Chem., 2011, 83: 7166-7172
[45] Ottesen E A, Hong J W, Quake S R, Leadbetter J R. Science, 2006, 314: 1464-1467
[46] Jiang D C, Sims C E, Allbritton N L. Electrophoresis, 2010, 31: 2558-2565
[47] Marc P J, Sims C E, Bachman M, Li G P, Allbritton N L. Lab Chip, 2008, 8: 710-716
[48] Boardman A, Chang T, Folch A, Dovichi N J. Anal. Chem., 2010, 82: 9959-9961
[1] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[2] 张芳娟, 刘海兵, 高梦琪, 王德富, 牛颜冰, 申少斐. 浓度梯度微流控芯片在药物筛选中的应用[J]. 化学进展, 2021, 33(7): 1138-1151.
[3] 蒋炳炎, 彭涛, 袁帅, 周明勇. 微流控芯片上的颗粒被动聚焦技术[J]. 化学进展, 2021, 33(10): 1780-1796.
[4] 蔡乐斯, 夏梦婵, 李展平, 张四纯, 张新荣. 二次离子质谱生物成像[J]. 化学进展, 2021, 33(1): 97-110.
[5] 邓王平, 王丽华, 宋世平, 左小磊. 生物传感器在POCT中的应用研究[J]. 化学进展, 2016, 28(9): 1341-1350.
[6] 蒋艳, 徐溢, 王人杰, 苏喜, 董春燕. 新型纳米荧光探针在微流控细菌芯片检测中的应用[J]. 化学进展, 2015, 27(9): 1240-1250.
[7] 雷相阳, 邱宪波, 葛胜祥, 夏宁邵, 陈兴, 崔大付. 基于微流控芯片的CD4+T淋巴细胞计数检测[J]. 化学进展, 2015, 27(7): 870-881.
[8] 王晓萍, 洪夏云, 詹舒越, 黄子昊, 庞凯. 表面等离子体共振传感技术和生物分析仪[J]. 化学进展, 2014, 26(07): 1143-1159.
[9] 林彩琴, 姚波* . 数字PCR技术进展[J]. 化学进展, 2012, 24(12): 2415-2423.
[10] 项楠, 朱晓璐, 倪中华. 惯性效应在微流控芯片中的应用[J]. 化学进展, 2011, 23(9): 1945-1958.
[11] 黄华璠, 梁坤, 刘玉鹏, 黄士堂, 褚泰伟. F-18标记放射性药物的新方法与新技术[J]. 化学进展, 2011, 23(7): 1501-1506.
[12] 瞿祥猛, 林荣生, 陈宏. 基于微流控芯片的微阵列分析[J]. 化学进展, 2011, 23(01): 221-230.
[13] 邓彬 徐见容 汪志明 肖玉秀. 毛细管电泳单细胞分析*[J]. 化学进展, 2010, 22(11): 2215-2223.
[14] 沈玉勤 姚波 方群. 磁场控制技术在微流控芯片中的应用*[J]. 化学进展, 2010, 22(01): 133-139.
[15] 姜萍,屈锋,谭信,李勤,耿利娜,邓玉林. 基于微流控芯片电泳的生物分子间相互作用研究*[J]. 化学进展, 2009, 21(09): 1895-1904.