English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

空间受阻型Lewis酸碱对在小分子活化中的应用

徐莹莹, 李钊, Maxim Borzov, 聂万丽*   

  1. 西北大学化学与材料科学学院 合成与天然功能分子化学教育部重点实验室 西安 710069
  • 收稿日期:2011-11-01 修回日期:2012-02-01 出版日期:2012-08-24 发布日期:2012-08-06
  • 通讯作者: 聂万丽 E-mail:niewl126@126.com
  • 基金资助:

    国家自然科学基金项目(No. 20702041, 21072157)资助

Application of Frustrated Lewis Pairs in the Activation of Small Molecules

Xu Yingying, Li Zhao, Maxim Borzov, Nie Wanli   

  1. Key Laboratory of Synthetic and Natural Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
  • Received:2011-11-01 Revised:2012-02-01 Online:2012-08-24 Published:2012-08-06
作为一种新型的非金属有机催化剂,空间受阻型路易斯酸碱对由于具有的独特化学反应性,近年来在有机小分子活化和催化加氢领域的研究非常活跃。本文总结了近年来国外发表的有关空间受阻型路易斯酸碱对的研究报道,从其结构特征、有机小分子的活化、H2活化机理的探讨及在催化领域应用的研究成果4个方面进行了详细的归纳整理。空间受阻型路易斯酸碱对对有机小分子的活化作用来源于其“分子间静电相互作用力”。这个在有机化学中早已熟知的概念却在2006年才被发现可活化有机小分子,并在之后受到广泛的关注。空间受阻型路易斯酸碱对化学的发展也扩展了有机化学反应研究的范畴,继续深入研究这种“分子间静电相互作用力”在其他未知领域的应用必将带来更大的发现。然而目前国内从事相关领域研究的报道很少,因此希望本文能够引起国内更多科研工作者对这个新兴领域产生研究兴趣。
Recently, frustrated Lewis pairs (FLPs) with unique chemical properties were found to exhibit high activity in catalytic hydrogenation and activation of small molecules. FLPs are now considered as a new prospective type of transition metal free catalysts and this area of chemistry is currently under intense development. This review summarizes the data of the recent achievements in this field. Different aspects concerning the FLPs’ nature, their capability to activate small molecules, possible mechanisms of the dihydrogen activation, along with the known practical applications of FLPs in catalysis are discussed in details. While the driving forces responsible for the reactivity of FLPs in respect to small molecules seem to be rather evident and, actually, present classical electrostatic intermolecular interactions, prior to the first reports on FLPs this brilliantly simple concept has never been utilized in the catalyst design. Since the pioneering work on FLPs in 2006, it is the native elegance of the approach which defines the general productivity of the investigations in this prospective direction. Unfortunately, till now the studies on the FLPs’ chemistry are comparatively few in China. We hope that this contribution could drive more attention of Chinese researchers to this interesting and potent area of modern chemistry. Contents 1 Introduction
2 Structure types of FLPs
3 Researchon activation of small molecules with FLPs
4 Mechanisms of hydrogen activation
5 Application of FLPs as non-metallic catalysts
5.1 Application examples of FLPs in the catalytic hydrogenation
5.2 Application of FLPs in the CO2 transformation
6 Conclusion

中图分类号: 

()
[1] Lewis G N. Valence and the Structure of Atoms and Molecules. 2nd ed. NY: Chemical Catalogue Company, Inc., 1923. 113-115
[2] Welch G C, Stephan D W. J. Am. Chem. Soc., 2007, 129: 1880-1881
[3] Wittig G, Benz E. Chem. Ber., 1959, 92: 1999-2013
[4] Tochtermann W. Angew. Chem., 1966, 78: 355-375
[5] Breen T L, Stephan D W. Inorg. Chem., 1992, 31: 4019-4022
[6] Doring S, Erker G, Frahlich R, Meyer O. Organometallics, 1998, 17: 2183-2187
[7] Welch G C, Juan R R S, Masuda J D, Stephan D W. Science, 2006, 314: 1124-1126
[8] Chase P A, Stephan D W. Angew. Chem., 2008, 120: 7543-7547
[9] Holschumacher D, Bannenberg T, Hrib C G, Jones P G, Tamm M. Angew. Chem., 2008, 120: 7538-7542
[10] Stephan D W, Erker G. Angew. Chem. Int. Ed., 2010, 49: 46-76
[11] Sumerin V, Schulz F, Nieger M, Leskela M, Repo T, Rieger B. Angew. Chem., 2008, 120: 6090-6092
[12] Sumerin V, Schulz F, Nieger M, Leskelo M, Repo T, Rieger B. Angew. Chem. Int. Ed., 2008, 47: 6001-6003
[13] Ullrich M, Lough A J, Stephan D W. J. Am. Chem. Soc., 2009, 131: 52-53
[14] Chase P A, Jurca T, Stephan D W. Chem. Commun., 2008, 1701-1703
[15] Spies P, Erker G, Kehr G, Bergander K, Fröehlich R, Grimme S, Stephan D W. Chem. Commun., 2007, 5072-5074
[16] Sumerin V, Schulz F, Nieger M, Atsumi M, Wang C, Leskela M, Pyykko P, Repo T, Rieger B. J. Organomet. Chem., 2009, 694: 2654-2660
[17] Spies P, Kehr G, Bergander K, Wibbeling B, Frahlich R, Erker G. Dalton Trans., 2009, 1534-1541
[18] Monkowius U, Nogai S, Schmidbaur H. Dalton Trans., 2003, 987-991
[19] Spies P, Fröehlich R, Kehr G, Erker G, Grimme S. Chem. Eur. J., 2008, 14: 333-343
[20] Geier S J, Stephan D W. J. Am. Chem. Soc., 2009, 131: 3476-3477
[21] Wang H, Fröehlich R, Kehr G, Erker G. Chem. Commun., 2008, 5966-5968
[22] Holschumacher D, Bannenberg T, Hrib C G, Jones P G, Tamm M. Angew. Chem., 2008, 120: 7538-7542
[23] Chen D, Wang Y, Klankermayer J. Angew. Chem. Int. Ed., 2010, 49: 9475-9478
[24] Ramos A, Lough A J, Stephan D W. Chem. Commun., 2009, 1118-1120
[25] Axenov K V, Kehr G, Frahlich R, Erker G. J. Am. Chem. Soc., 2009, 131: 3454-3455
[26] Voss T, Sortais J, Fröehlich R, Kehr G, Erker G. Organometallics, 2011, 30: 584-594
[27] Spies P, Erker G, Kehr G, Bergander K, Fröehlich R, Grimme S, Stephan D W. Chem. Commun., 2007, 5072-5074
[28] Rokob T A, Hamza A, Stirling A, P醦ai I. Angew.Chem., 2008, 120: 2469-2472
[29] Hamza A, Stirling A, Rokob T A, P醦ai I. Int. J. Quantum Chem., 2009, 109: 2416-2425
[30] Grimme S, Kruse H, Goerigk L, Erker G. Angew. Chem. Int. Ed., 2010, 49: 1402-1405
[31] Welch G C, Juan R R S, Masuda J D, Stephan D W. Science, 2006, 314: 1124-1126
[32] Welch G C, Stephan D W. J. Am. Chem. Soc., 2007, 129: 1880-1881
[33] Axenov K V, Kehr G, Fröehlich R, Erker G. Angew. Chem., 2008, 120: 7654-7657
[34] Spies P, Schwendemann S, Lange S, Kehr G, Fröehlich R, Erker G. Angew. Chem. Int. Ed., 2008, 47: 7543-7546
[35] Stephan D W, Erker G. Angew. Chem., 2010, 122: 50-81
[36] Hamza A, Stirling A, Rokob T A, P醦ai I. Int. J. Quantum Chem., 2009, 109: 2416-2425
[37] Grimme S, Kruse H, Goerigk L, Erker G. Angew. Chem. Int. Ed., 2010, 49: 1402-1405
[38] Chase P A, Welch G C, Jurca T, Stephan D W. Angew. Chem., 2007, 119: 8196-8199
[39] Spies P, Schwendemann S, Lange S, Kehr G, Fröhlich R, Erker G. Angew. Chem., 2008, 120: 7654-7657
[40] Wang H, Fröhlich R, Kehr G, Erker G. Chem. Commun., 2008, 5966-5968
[41] Chase P A, Jurca T, Stephan D W. Chem. Commun., 2008, 1701-1703
[42] Chase P A, Welch G C, Jurca T, Stephan D W. Angew. Chem. Int. Ed., 2007, 46: 8050-8053
[43] Liptau P, Tebben L, Kehr G, Frahlich R, Erker G, Hollmann F, Rieger B. Eur. J. Org. Chem., 2005,9: 1909-1918
[44] Grimme S, Stephan D W, Erker G. Angew. Chem. Int. Ed., 2009, 48: 6643-6646
[45] Menard G, Stephan D W. J. Am. Chem. Soc., 2010, 132: 1796-1797
[46] Berkefeld A, Piers W E, Parvez M. J. Am. Chem. Soc., 2010, 132: 10660-10661
[1] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[2] 唐兴, 胡磊, 孙勇, 曾宪海, 林鹿. 生物质基乙酰丙酸选择性还原制备新型平台化合物γ-戊内酯[J]. 化学进展, 2013, 25(11): 1906-1914.
[3] 张淑芳, 白赢, 彭家建, 胡应乾*, 来国桥*. 聚苯乙烯固载过渡金属催化剂在硅氢加成和加氢反应中的应用[J]. 化学进展, 2013, 25(05): 707-716.
[4] 夏传海,徐杰,吴文忠,梁鑫淼. 二噁(英)降解方法的研究[J]. 化学进展, 2004, 16(01): 123-.
[5] 李国平,江焕峰,李金恒. 超(近)临界流体中的催化加氢反应[J]. 化学进展, 2001, 13(06): 455-.