English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

有机小分子催化ε-己内酯开环聚合反应

许茸, 陈春霞*   

  1. 东北林业大学理学院化学化工系 哈尔滨 150040
  • 收稿日期:2011-11-01 修回日期:2012-01-01 出版日期:2012-08-24 发布日期:2012-08-06
  • 通讯作者: 陈春霞 E-mail:ccx1759@163.com
  • 基金资助:

    中央高校基本科研业务费专项资金项目(No.DL11CB06)和东北林业大学研究生创新资助项目(No.2010088)资助

Ring-Opening Polymerization of ε-Caprolactone Catalyzed by Organocatalyst

Xu Rong, Chen Chunxia   

  1. College of Science, Northeast Forestry University, Harbin 150040, China
  • Received:2011-11-01 Revised:2012-01-01 Online:2012-08-24 Published:2012-08-06
聚己内酯(PCL)是一种生物可降解高分子材料,具有良好的环境、生物相容性,广泛应用于生物医学、包装等领域。有机小分子催化ε-己内酯单体开环聚合反应是制备聚己内酯的主要方式之一。与传统的金属催化相比,有机催化不仅反应条件温和、聚合可控,而且还可解决聚合物中金属残留问题,是目前高分子合成化学的研究热点。本文按照催化体系的不同活化方式,讨论了近年来有机催化在ε-己内酯开环聚合反应中的研究进展,归纳总结了不同催化体系的优缺点,并在此基础上展望了有机小分子催化剂在ε-己内酯开环聚合反应中的发展趋势和应用前景。
Poly(ε-caprolactone) (PCL) is an important class of biocompatible materials, which makes them interesting materials for a range of biomedical and commodity applications, including controlled drug release, tissue engineering, medical implants or environmentally friendly packaging materials. PCL can be prepared through the ring-opening polymerization of ε-caprolactone catalyzed by organic molecules. Compared to traditional metal-catalyzed ROPs, organocatalysis processes can be performed under milder reaction conditions with controlled molar masses and narrow dispersities, furthermore the metal contaminants of the polymer products can be avoided to be removed prior to application as biomedical and pharmaceutical materials. Herein the progress of organocatalysts in the ring-opening polymerization of ε-caprolactone is reviewed according to different means of the activation of the catalysts. The advantages and disadvantages of various catalytic systems are summarized, and development trends and application prospects of organocatalysis for polymerization of ε-caprolactone are also discussed. Contents 1 Introduction
2 Organocatalysts based on electrophilic monomer activation
3 Lewis bases and organocatalysts based on nucleophilic monomer activation
3.1 Organocatalysis by nucleophilic monomer activation
3.2 Organocatalysis by initiator/chain-end activation
4 Synergistic bifunctional organocatalysts and initiator/chain-end activation
5 Conclusion

中图分类号: 

()
[1] Vion J M, Jerome R, Teyssie P, Aubin M, Prudhomme R E. Macromolecules, 1986, 19(7): 1828-1838
[2] Barrett D G, Yousaf M N. Molecules, 2009, 14: 4022-4050
[3] Coulembier O, Degée P, Hedrick J L, Dubois P. Prog. Polym. Sci., 2006, 31(8): 723-747
[4] Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Chem. Rev., 2004, 104(12): 6147-6176
[5] Albertsson A C, Varma I K. Biomacromolecules, 2003, 4(6): 1466-1486
[6] Kricheldorf H R, Kreiser-Saunders I, Stricker A. Macromolecules, 2000, 33(3): 702-709
[7] Degree P, Dubois P, Jerome R. Macromol. Chem. Phys., 1997, 198(6): 1973-1984
[8] Storey R F, Sherman J W. Macromolecules, 2002, 35(5): 1504-1512
[9] Shen Y Q, Shen Z Q, Zhang Y F. J. Polym. Sci. Part A: Polym. Chem., 1997, 35(8): 1339-1352
[10] 申淼(Shen M), 刘绍峰 (Liu S F), 张文娟 (Zhang W J), 孙文华 (Sun W H). 高分子通报 (Polym. Bull.), 2011, 55-63
[11] Nahrain E K, Wonhee J, Waymouth R M, Russell C P, Lohmeijer B G G, Hedrick J L. Chem. Rev., 2007, 107(12): 5813-5840
[12] Dove A P. Chem. Commun., 2008, 6446-6470
[13] Dubois P, Coulembier O, Raquez J M. Handbook of Ring-Opening Polymerization. Weinheim: Wiley-VCH, 2009
[14] Kiesewetter M K, Shin E J, Hedrick J L, Waymouth R M. Macromolecules, 2010, 43(5): 2093-2107
[15] Shibasaki Y, Sanada H, Makiko Y, Sanda F, Endo T. Macromolecules, 2000, 33(12): 4316-4320
[16] Liu J Y, Liu L J. Macromolecules, 2004, 37(8): 2674-2676
[17] Casas J, Persson P V, Iversen T, Armando C. Adv. Synth. Catal., 2004, 346(9): 1087-1089
[18] Gazeau-Bureau S, Delcroix D, Martin-Vaca B, Bourissou D, Navarro C, Magnet S P. Macromolecules, 2008, 41(11): 3782-3784
[19] Wilson B C, Jones C W. Macromolecules, 2004, 37(26): 9709-9714
[20] Kosuke M, Toshifumi S, Toyojim K. Macromolecules, 2011, 44(7): 1999-2005
[21] Myers M, Connor E F, Glauser T. J. Polym. Sci. Part A: Polym. Chem., 2002, 40(7): 844-851
[22] Connor E F, Nyce G W, Myers M, Andresas M, Hedrick J L. J. Am. Chem. Soc., 2002, 124(6): 914-915
[23] Nyce G W, Glauser T, Connor E F, Mock A, Waymouth R M, Hedrick J L. J. Am. Chem. Soc., 2003, 125(10): 3046-3056
[24] Scholten M D, Hedrick J L, Waymouth R M. Macromolecules, 2008, 41(20): 7399-7404
[25] Raynaud J, Gnanou Y, Taton D. Macromolecules, 2009, 42(16): 5996-6005
[26] Dove A P, Pratt R C, Lohmeijer B G G, Culkin D A, Hagberg E C, Nyce G W, Waymouth R M, Hedrick J L. Polymer, 2006, 47(11): 4018-4025
[27] Kamber N E, Jeong W, Gonzalez S, Hedrick J L, Waymouth R M. Macromolecules, 2009, 42(5): 1634-1639
[28] Kaljurand I, Kutt A, Soovali L. J. Org. Chem., 2005, 70: 1019-1028
[29] Zhang L, Nederberg F, Pratt R C, Waymouth R M, Hedrick J L, Wade C G. Macromolecules, 2007, 40(12): 4154-4158
[30] Schlaad H, Kukula H, Rudloff J, Below I. Macromolecules, 2001, 34(13): 4302-4304
[31] Rexin O, Mulhaupt R. J. Polym. Sci. Part A: Polym. Chem., 2002, 40(7): 864-873
[32] Lohmeijer B G G, Pratt R C, Leibfarth F, David A L, Andrew P D, Nederberg F, Choi J, Wade C, Waymouth R M, Hedrick J L. Macromolecules, 2006, 39(25): 8574-8583
[33] Zhang L, Nederberg F, Messman J M, Pratt R C, Hedrick J L, Wade C G. J. Am. Chem. Soc., 2007, 129(42): 12610-12611
[34] Zhang L, Nederberg F, Pratt R C, Waymouth R M, Hedrick J L, Wade C G. Macromolecules, 2007, 40(12): 4154-4158
[35] Pratt R C, Lohmeijer B G G, Long D A, Pontus L P N, Dove A P, Li H, Wade C G, Waymouth R M, Hedrick J L. Macromolecules, 2006, 39(23): 7863-7871
[36] Bensa D, Rodriguez J. Synth. Commun., 2004, 34(8): 1515-1533
[37] Schuchardt U, Vargas R M, Gelbard G J J. J. Mol. Catal. A: Chem., 1995, 99(1): 65-70
[38] Heldebrant D J, Jessop P G, Thomas C A, Eckert C A, Liotta C L. J. Org. Chem., 2005, 70(13): 5335-5338
[39] Dove A P, Pratt R C, Lohmeijer B G G, Waymouth R M, Hedrick J L. J. Am. Chem. Soc., 2005, 127(40): 13798-13799
[40] Lohmeijer B G G, Pratt R C, Leibfarth F, Logan J W, Long D A, Dove A P, Nederberg F, Choi J, Wade C, Waymouth R M, Hedrick J L. Macromolecules, 2006, 39(25): 8574-8583
[41] Pratt R C, Lohmeijer B G G, Long D A, Waymouth R M, Hedrick J L. J. Am. Chem. Soc., 2006, 128(14): 4556-4557
[42] Zhang L, Pratt R C, Nederberg F, Horn H W, Rice J E, Waymouth R M, Wade C G, Hedrick J L. Macromolecules, 2010, 43(3): 1660-1664
[1] 秦国富, 刘一寰, 尹帆, 胡欣, 朱宁, 郭凯. 开环聚合接枝改性木质素[J]. 化学进展, 2020, 32(10): 1547-1556.
[2] 李宁, 胡欣, 方亮, 寇佳慧, 倪亚茹, 陆春华. 有机催化原子转移自由基聚合[J]. 化学进展, 2019, 31(6): 791-799.
[3] 刘德培, 田敬, 李静莎, 唐正, 王海燕, 唐有根. 锰铈二元氧化物的制备与应用[J]. 化学进展, 2019, 31(6): 811-830.
[4] 闫吉军, 康传清*, 高连勋. 阴离子-萘四酸双酰亚胺相互作用及其应用[J]. 化学进展, 2018, 30(7): 902-912.
[5] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[6] 高晗, 徐军, 胡欣, 朱宁, 郭凯. 聚酯酰胺的合成[J]. 化学进展, 2018, 30(11): 1634-1645.
[7] 牛凡凡, 聂昌军, 陈勇, 孙小玲. 非官能化烯烃的不对称催化环氧化反应[J]. 化学进展, 2014, 26(12): 1942-1961.
[8] 刘海灵*. 负载有机膦的合成及其在有机催化领域的应用[J]. 化学进展, 2013, 25(0203): 322-329.
[9] 徐莹莹, 李钊, Maxim Borzov, 聂万丽*. 空间受阻型Lewis酸碱对在小分子活化中的应用[J]. 化学进展, 2012, 24(08): 1526-1532.
[10] 李光, 白如科. 叠氮聚合物的合成[J]. 化学进展, 2011, 23(8): 1692-1699.
[11] 李启蒸, 张国艺, 袁聪, 魏柳荷, 马志. 聚烯烃/聚酯(聚醚)共聚物的合成及其应用[J]. 化学进展, 2011, 23(6): 1174-1180.
[12] 周莅霖 袁金颖 蔡志楠 洪啸吟. 活性开环聚合与可控自由基聚合机理转换合成精细结构共聚物*[J]. 化学进展, 2010, 22(09): 1799-1807.
[13] 方玲 石岩 朱成建. 有机小分子催化的β-酮酯不对称α-官能化反应[J]. 化学进展, 2010, 22(09): 1679-1686.
[14] 李楠 刘伟军 龚流柱. 手性有机小分子催化的最新进展*[J]. 化学进展, 2010, 22(07): 1362-1379.
[15] 蒋波 詹晓力 易玲敏 张晓东 许敏 孙立. 六甲基环三硅氧烷(D3)阴离子开环聚合机理与动力学研究[J]. 化学进展, 2010, 22(06): 1169-1176.