English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

静电纺丝制备图案化无机纳米纤维

刘瑞来1,2, 刘海清*2, 刘俊劭1, 江慧华1   

  1. 1. 武夷学院环境与建筑工程系 福建省高校绿色化工技术重点实验室 武夷山 354300;
    2. 福建师范大学化学与材料学院 福建省高分子材料重点实验室 福州 350007;
  • 收稿日期:2011-11-01 修回日期:2012-03-01 出版日期:2012-08-24 发布日期:2012-08-06
  • 通讯作者: 刘海清 E-mail:haiqing.liu@gmail.com
  • 基金资助:

    国家自然科学基金项目( No.50973019)、 国家重点基础研究发展计划(973)项目(No. 2010CB732203)、武夷学院青年教师专项科研基金项目(No.xq201021)资助

Fabrication of Patterned Inorganic Nanofibers by Electrospinning

Liu Ruilai1,2, Liu Haiqing2, Liu Junshao1, Jiang Huihua1   

  1. 1. Department of Environmental and Architectural Engineering, Key Laboratory for Green Chemical Technology of Fujian Higher Education, Wuyi University, Wuyishan 354300, China;
    2. College of Chemistry and Materials Science, Key Laboratory of Polymer Materials of Fujian Province, Fujian Normal University, Fuzhou 350007, China
  • Received:2011-11-01 Revised:2012-03-01 Online:2012-08-24 Published:2012-08-06
静电纺丝技术近几年在制备纳米纤维领域得到了广泛的应用,被认为是批量制备纳米纤维材料最简单有效的方法。本文综述了近几年高压静电纺丝技术制备图案化无机物纳米纤维的纺丝装置和过程,特别详细综述了纺丝过程中纤维直径的变化,利用带电流体动力学(EHD)理论推导出纤维直径变化的运动方程,并对方程进行一定程度的修订,以符合电纺无机物纳米纤维直径的变化;并综述了取向纳米纤维、中空纳米纤维、壳-核结构纳米纤维、纳米线、纳米带、纳米管及多层次结构纳米纤维的构建及其基本性能。最后对电纺制备图案化无机纳米纤维未来发展方向,特别是功能化多层次结构电纺无机纳米纤维制备进行了展望。
The electrospinning technique has been regarded as the simplest and most effective techniques for massive fabrication of nanomaterials. Various inorganic micro- and nano-fibers have been successfully electrospun in recent years. These fibers can be amorphous, polycrystalline, dense, porous, or hollow. In this review, the fabrication of patterned inorganic nanofibers via electrospinning is presented. After a brief description of the setups for electrospinning, we choose to concentrate on the mechanisms and theoretical models that have been developed for electrospinning. It introduces electrohydrodynamic (EHD) theory that allows the prediction of organic fiber diameter. And the equation was revised in order to be applicable to most inorganic electrospinning systems, as well as have the ability to control the diameter and morphology. It reviews fabrication of aligned nanofibers by using different collectors such as a cylinder collector with high rotating speed, a thin wheel with sharp edge, a pair of split electrodes and the knife-edged counter-electrodes, and fabrication of hollow nanofibers by using sacrificial templates and coaxial electrospinning. At last, it reviews the functional hierarchical structured nanofibers prepared by in situ sol-gel and post-processing methods such as hydrothermal synthesis and chemical vapor deposition. Additionally, the future trends of these interesting patterned inorganic nanofibers, especially the functional hierarchical structured nanofibers are outlooked. Contents 1 Introduction
2 Set-up and principle of electrospinning
3 Preparation of inorganic nanofibers
3.1 Preparation of solution
3.2 Electrospinning of solution
3.3 Calcination of as-spun nanofibers
4 Preparation of patterned inorganic nanofibers
4.1 Aligned nanofibers
4.2 Hollow nanofibers
4.3 Functional hierarchical structured nanofibers
5 Applications of inorganic nanofibers
6 Conclusion and prospects

中图分类号: 

()
[1] Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S. J. Appl. Phys., 2007, 102: 111101-111116
[2] Piticescu R M, Piticescu R, Taloi D, Badilita V. Nanotechnology, 2003, 14: 312-317
[3] Rao C, Vivekchand S, Biswas K, Govindaraj A. Dalton Transactions, 2007, 3728-3749
[4] Miao Z, Xu D, Ouyang J, Guo G, Zhao X, Tang Y. Nano Lett., 2002, 2(7): 717-720
[5] Reneker D H, Chun I. Nanotechnology, 1996, 7: 216-223
[6] Dzenis Y. Science, 2004, 304(5679): 1917-1919
[7] 黄浪欢(Huang L H), 王后锦(Wang H J), 刘应亮(Liu Y L), 焦自斌(Jiao Z B), 邵子倍(Shao Z B). 化学进展(Progress in Chemistry), 2010, 22(5): 867-876
[8] Li D, Xia Y. Adv. Mater., 2004, 16(14): 1151-1170
[9] Huang Z M, Zhang Y Z, Kotaki M, Ramakrishna S. Compos. Sci. Technol., 2003, 63(15): 2223-2253
[10] Ma M, Hill R M, Lowery J L, Fridrikh S V, Rutledge G C. Langmuir, 2005, 21(12): 5549-5554
[11] Feng J. Phys. Fluids, 2002, 14(11): 3912-3927
[12] Liu R, Huang Y, Xiao A, Liu H. J. Alloys Compd., 2010, 503(1): 103-110
[13] Hohman M M, Shin M, Rutledge G, Brenner M P. Phys. Fluids, 2001, 13(8): 2201-2020
[14] Hohman M M, Shin M, Rutledge G, Brenner M P. Phys. Fluids, 2001, 13(8): 2221-2236
[15] Shin Y M, Hohman M M, Brenner M P, Rutledge G C. Appl. Phys. Lett., 2001, 78(8): 1149-1151
[16] Reneker D H, Yarin A L, Fong H, Koombhongse S. J. Appl. Phys., 2000, 87(9): 4531-4547
[17] Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A, Taylor J, Nino J C. J. Am. Ceram. Soc., 2006, 89(2): 395-407
[18] Shin Y M, Hohman M M, Brenner M P, Rutledge G C. Polymer, 2001, 42(25): 9955-9967
[19] Deitzel J M, Kleinmeyer J, Harris D, Beck N C. Polymer, 2001, 42(1): 261-272
[20] Fridrikh S V, Yu J H, Brenner M P, Rutledge G C. Phys. Rev. Lett., 2003, 90(14): art. no. 144502
[21] Park H. Doctoral Dissertation of University of Florida, 2005
[22] Yarin A L, Koombhongse S, Reneker D H. J. Appl. Phys., 2001, 89(5): 3018-3026
[23] Fong H, Chun I, Reneker D. Polymer, 1999, 40(16): 4585-4592
[24] Tang C, Ye S, Liu H. Polymer, 2007, 48(15): 4482-4491
[25] Koski A, Yim K, Shivkumar S. Mater. Lett., 2004, 58(3/4): 493-497
[26] McKee M G, Wilkes G L, Colby R H, Long T E. Macromolecules, 2004, 37(5): 1760-1767
[27] Gupta P, Elkins C, Long T E, Wilkes G L. Polymer, 2005, 46(13): 4799-4810
[28] Liu H, Hsieh Y L. J. Polym. Sci. Part B: Polym. Phys., 2002, 40(18): 2119-2129
[29] Liu H, Tang C. Polym. J., 2006, 39(1): 65-72
[30] Li D, Wang Y, Xia Y. Nano Lett., 2003, 3(8): 1167-1171
[31] 梁建鹤(Liang J H), 杨锦霞(Yang J X), 黄应兴(Huang Y X), 刘海清(Liu H Q). 化学学报(Acta Chimica Sinica), 2010, 68(17): 1717-1718
[32] Li D, McCann J T, Xia Y, Marquez M. J. Am. Ceram. Soc., 2006, 89(6): 1861-1869
[33] Kokubo H, Ding B, Naka T, Tsuchihira H, Shiratori S. Nanotechnology, 2007, 18: art. no. 165604
[34] Song M Y, Kim D K, Ihn K J, Jo S M, Kim D Y. Synth. Met., 2005, 153(1/3): 77-80
[35] Formo E, Yavuz M S, Lee E P, Lane L, Xia Y. J. Mater. Chem., 2009, 19(23): 3878-3882
[36] Wang G, Ji Y, Huang X, Yang X, Gouma P I, Dudley M. J. Phys. Chem. B, 2006, 110(47): 23777-23782
[37] Liu R, Ye H, Xiong X, Liu H. Mater. Chem. Phys., 2010, 121(3): 432-439
[38] Formo E, Camargo P H C, Lim B, Jiang M, Xia Y. Chem. Phys. Lett., 2009, 476(1/3): 56-61
[39] Liu H, Yang J, Liang J, Huang Y, Tang C. J. Am. Ceram. Soc., 2008, 91(4): 1287-1291
[40] Deheer W A, Bacsa W, Chatelain A, Gerfin T, Humphrey-Baker R, Forro L, Ugarte D. Science, 1995, 268(5212): 845-847
[41] Matthews J A, Wnek G E, Simpson D G, Bowlin G L. Biomacromolecules, 2002, 3(2): 232-238
[42] Katta P, Alessandro M, Ramsier R, Chase G. Nano Lett., 2004, 4(11): 2215-2218
[43] Liao H Q, Wu Y M, Wu M Y, Zhan X R, Liu H Q. Cellulose, 2012, 19(1): 111-119
[44] Khamforoush M, Mahjob M. Mater. Lett., 2011, 65(3): 453-455
[45] Theron A, Zussman E, Yarin A. Nanotechnology, 2001, 12(3): 384-390
[46] Li D, Wang Y, Xia Y. Adv. Mater., 2004, 16(4): 361-366
[47] McCann J T, Chen J I L, Li D, Ye Z G, Xia Y. Chem. Phys. Lett., 2006, 424(1/3): 162-166
[48] Li D, Herricks T, Xia Y. Appl. Phys. Lett., 2003, 83(22): 4586-4588
[49] Li D, Ouyang G, McCann J T, Xia Y. Nano Lett., 2005, 5(5): 913-916
[50] Teo W E, Ramakrishna S. Nanotechnology, 2005, 16: 1878-1885
[51] Liu Y, Zhang X, Xia Y, Yang H. Adv. Mater., 2010, 22(22): 2454-2457
[52] Choi S H, Ankonina G, Youn D Y, Oh S G, Hong J M, Rothschild A, Kim I D. ACS Nano, 2009, 3(9): 2623-2631
[53] Kim W S, Lee B S, Kim D H, Kim H C, Yu W R, Hong S H. Nanotechnology, 2010, 21(24): art. no. 245605
[54] Qiu Y, Yu J. Solid State Commun., 2008, 148(11/12): 556-558
[55] Zhang T, Ge L, Wang X, Gu Z. Polymer, 2008, 49(12): 2898-2902
[56] Li D, Xia Y. Nano Lett., 2004, 4(5): 933-938
[57] McCann J T, Li D, Xia Y. J. Mater. Chem., 2004, 15(7): 735-738
[58] Zhan S, Chen D, Jiao X, Tao C. J. Phys. Chem. B, 2006, 110(23): 11199-11204
[59] Yu Y, Gu L, Wang C, Dhanabalan A, van Aken P A, Maier J. Angew. Chem. Int. Ed., 2009, 48(35): 6485-6489
[60] Chang G, Zheng X, Chen R, Chen X, Chen L, Chen Z. Acta Phys. Chim. Sin., 2008, 24(10): 1790-1797
[61] Li D, McCann J T, Xia Y. Small, 2005, 1(1): 83-86
[62] 张双虎(Zhang S H), 董相廷(Dong X T), 徐淑芝(Xu S Z), 王进贤(Wang J X). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2008, 37(12): 2196-2200
[63] Zhan S, Chen D, Jiao X. J. Colloid Interface Sci., 2008, 318(2): 331-336
[64] Yuan T, Zhao B T, Cai R, Zhou Y K, Shao Z P. J. Mater. Chem., 2011, 21(38): 15041-15048
[65] Zhao Y, Cao X, Jiang L. J. Am. Chem. Soc., 2007, 129(4): 764-765
[66] Xiang H, Long Y, Yu X, Zhang X, Zhao N, Xu J. CrystEngComm, 2011, 13(15): 4856-4860
[67] Wei S, Zhou M, Du W. Sensors Actuat. B: Chem., 2011, 160(1): 753-759
[68] Zhang Z, Li X, Wang C, Wei L, Liu Y, Shao C. J. Phys. Chem. C, 2009, 113(45): 19397-19403
[69] Cui Q, Dong X, Wang J, Li M. J. Rare Earth, 2008, 26(5): 664-669
[70] Dong X, Wang J, Cui Q, Liu G, Yu W. Int. J. Chem., 2009, 1(1): 13-17
[71] Choi J K, Hwang I S, Kim S J, Park J S, Park S S,Jeong U, Kang Y C, Lee J H. Sensor. Actuat. B: Chem., 2010, 150(1): 191-199
[72] Wei S, Zhang Y, Zhou M. Solid State Commun., 2011, 151(12): 895-899
[73] Dai Y, Liu W, Formo E, Sun Y, Xia Y. Polym. Adv. Technol., 2011, 22: 326-338
[74] Ostermann R, Li D, Yin Y, McCann J T, Xia Y. Nano Lett., 2006, 6(6): 1297-1302
[75] Liu Z, Sun D D, Guo P, Leckie J O. Nano Lett., 2007, 7(4): 1081-1085
[76] Gu Y, Chen D, Jiao X, Liu F. J. Mater. Chem., 2007, 17(18): 1769-1776
[77] Saquing C D, Manasco J L, Khan S A. Small, 2009, 5(8): 944-951
[78] Cavaliere S, Subianto S, Chevallier L, Jones D J, Roziere J. Chem. Commun., 2011, 6834-6836
[79] Panels J E, Lee J, Park K Y, Kang S Y, Marquez M, Wiesner U, Joo Y L. Nanotechnology, 2008, 19: art. no. 455612
[80] Kim S, Lim S K. Appl. Catal. B: Environ., 2008, 84(1/2): 16-20
[81] Meng X, Shin D W, Yu S M, Jung J H, Kim H I, Lee H M, Han Y H, Bhoraskar V, Yoo J B. CrystEngComm, 2011, 13: 3021-3029
[82] Wang N, Sun C, Zhao Y, Zhou S, Chen P, Jiang L. J. Mater. Chem., 2008, 18(33): 3909-3911
[83] Dai Y, Lu X, McKiernan M, Lee E P, Sun Y, Xia Y. J. Mater. Chem., 2010, 20(16): 3157-3162
[84] Wang C, Zhang X, Shao C, Zhang Y, Yang J, Sun P, Liu X, Liu H, Liu Y, Xie T, Wang D. J. Colloid Interface Sci., 2011, 363(1): 157-164
[85] Zhang P, Shao C L, Zhang Z Y, Zhang M Y, Mu J B, Guo Z C, Liu Y C. Nanoscale, 3(7): 2943-2949
[86] Su C, Shao C, Liu Y. J. Colloid Interface Sci., 2011, 346(2): 324-329
[87] Cao T, Li Y, Wang C, Shao C, Liu Y. Langmuir, 2011, 27(6): 2946-2952
[88] Fragala M E, Cacciotti I, Aleeva Y, Lo Nigro R, Bianco A, Malandrino G, Spinella C, Pezzotti G, Gusmano G. CrystEngComm, 2010, 12(11): 3858-3865
[89] Formo E, Peng Z, Lee E, Lu X, Yang H, Xia Y. J. Phys. Chem. C, 2008, 112(27): 9970-9975
[90] Formo E, Lee E, Campbell D, Xia Y. Nano Lett., 2008, 8(2): 668-672
[91] Li C J, Wang J N, Li X Y, Zhang L L. J. Mater. Sci., 2011, 46(7): 2058-2063
[92] Aryal S, Dharmaraj N, Bhattarai S R, Khil M S, Kim H Y. J. Nanosci. Nanotech., 2006, 6(2): 510-513
[93] Remant Bahadur K C, Kim C K, Khil M S, Kim H Y, Kim I S. Mater. Sci. Eng. C, 2008, 28(1): 70-74
[94] Nagamine S, Ishimaru S, Taki K, Ohshima M. Mater. Lett., 2011, 65(19/20): 3027-3029
[95] Lu X, Mao H, Zhang W. Nanotechnology, 2007, 18(2): art. no. 025604
[96] Lu X, Zhao Q, Liu X, Wang D, Zhang W, Wang C, Wei Y. Macromol. Rapid Commun., 2006, 27(6): 430-434
[1] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[2] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[3] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[4] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[5] 朱蕾, 王嘉楠, 刘建伟, 王玲, 延卫. 静电纺丝一维纳米材料在气敏传感器的应用[J]. 化学进展, 2020, 32(2/3): 344-360.
[6] 马亮, 时学娟, 张笑笑, 李莉莉. 可控核/壳结构聚合物电纺纤维的制备与应用[J]. 化学进展, 2019, 31(9): 1213-1220.
[7] 冯盛, 杨芳, 刘梦瑶, 范红显, 徐念. 抗癌药物多烯紫杉醇载体[J]. 化学进展, 2019, 31(2/3): 368-380.
[8] 刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑. 光化学反应在生物材料表面修饰中的应用[J]. 化学进展, 2019, 31(10): 1425-1439.
[9] 郑勰, 周一凡, 陈思远, 刘晓云, 查刘生. 刺激响应性电纺纳米纤维[J]. 化学进展, 2018, 30(7): 958-975.
[10] 杜海顺, 刘超, 张苗苗, 孔庆山, 李滨*, 咸漠. 纳米纤维素的制备及产业化[J]. 化学进展, 2018, 30(4): 448-462.
[11] 李勃天, 温幸, 唐黎明. 一维聚合物-无机纳米复合材料的制备[J]. 化学进展, 2018, 30(4): 338-348.
[12] 周晨, 吴俊涛*. 仿生微纳米纤维黏附材料[J]. 化学进展, 2018, 30(12): 1863-1873.
[13] 茹静, 耿璧垚, 童聪聪, 王海英, 吴胜春, 刘宏治. 纳米纤维素基吸附材料[J]. 化学进展, 2017, 29(10): 1228-1251.
[14] 蒋敏, 王敏, 魏仕勇, 陈志宝, 木士春. 基于静电纺丝技术的取向纳米纤维[J]. 化学进展, 2016, 28(5): 711-726.
[15] 孟德芃, 吴俊涛. 静电纺丝法制备新型吸附分离材料[J]. 化学进展, 2016, 28(5): 657-664.