English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

基于纳米ZnO的白光LED

方云霞, 方晓明*, 张正国   

  1. 华南理工大学化学与化工学院 传热强化与过程节能教育部重点实验室 广州 510640
  • 收稿日期:2011-11-01 修回日期:2012-01-01 出版日期:2012-08-24 发布日期:2012-08-06
  • 通讯作者: 方晓明 E-mail:cexmfang@scut.edu.cn

Zinc Oxide for White Light Emitting Diode

Fang Yunxia, Fang Xiaoming, Zhang Zhengguo   

  1. Key Lab of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
  • Received:2011-11-01 Revised:2012-01-01 Online:2012-08-24 Published:2012-08-06
白光发光二极管被誉为第4代照明光源。ZnO纳米结构因含有大量本征和/或非本征缺陷使其除出现在紫外区域的带边发射外还能产生覆盖400-700 nm可见光范围的深能级发光,从而可用于白光LED。本文系统地介绍了将ZnO纳米结构应用于白光LED的几种器件构造,并评述了各自的性能特点和研究进展。因为直接基于ZnO纳米结构电致发光的白光LED需要施加较高的偏压,所以将ZnO纳米结构与p型半导体复合制成异质结成为了研究的热点。ZnO纳米结构的制备方法和形貌特性会影响白光LED性能,对ZnO纳米结构进行掺杂是提升性能的重要手段。此外,将ZnO纳米材料和聚合物的优点集于一体的ZnO/聚合物异质结构也在白光LED中具有广阔的发展空间。最后,指出了纳米ZnO在白光LED应用中存在的问题和今后的发展方向。
White light-emitting diodes (WLEDs), a new type of cold solid-state lighting sources, have been considered as “the fourth-generation lighting sources” owing to their advantages of small size, high efficiency, and long lifetime. ZnO is an important semiconductor with excellent optoelectronic and piezoelectric properties, and can be easily prepared into various nanostructures with different morphologies. Besides showing a sharp band-gap emission peak located within the ultra-violet region, ZnO nanostructures exhibit a broad deep band emission that can cover the visible light region between 400 nm and 700 nm, which originates from their intrinsic and/or extrinsic defects, and thus show a potential application in WLEDs. This paper systematically introduces several types of WLEDs configuration composed of ZnO nanostructures, and reviews their performance characteristics and research progress. Since the WLEDs just based on the electroluminescence of ZnO nanostructures need to be applied a high bias, the WLEDs consisting of the heterojunctions prepared by depositing ZnO nanostructures directly on p-type semiconductors (such as GaN) become a hot topics. The preparation methods and the obtained morphologies of ZnO nanostructures have effects on the photoluminescent and electroluminescent spectra of the ZnO nanostructures and thus the performance of the WLEDs. Doping with metal ions or cooperating with other semiconductors can effectively tune the emission spectra of ZnO nanomaterials and thus improve the performance of WLEDs. Moreover, ZnO/polymer heretostructures that combine the excellent properties of ZnO nanostructures with the advantages of polymers show great promise for application in WLEDs. Finally, the problems related to the researches on WLEDs based on ZnO nanostructures and the future developing trends are presented. Contents 1 Introduction
2 WLEDs based on electroluminescence of ZnO nanostructures
3 WLEDs based on electroluminescence of ZnO/polymer heterostructures
4 WLEDs based on photoluminescence of nanosized ZnO
5 Conclusions and outlook

中图分类号: 

()
[1] Dupuis R D, Krames M R. J. Lightwave Technol., 2008, 26: 1154-1171
[2] 郑智斌(Zheng Z B), 彭万华(Peng W H). 液晶与显示 (Chinese Journal of Liquid Crystals and Displays), 2001, 16 (2): 145-149
[3] 王占国 (Wang Z G), 樊志军 (Fan Z J), 刘祥林(Liu X L), 万寿科 (Wan S K). 半导体学报(Journal of Semiconductors), 2001, 22 (5): 569-572
[4] Vázquez M, Núez N, Nogueira E, Borreguero A. Microelectron. Reliab., 2010, 50: 1559-1562
[5] 黄劲松 (Huang J S), 董逊 (Dong S), 刘祥林 (Liu X L), 徐仲英 (Xu Z Y), 葛维琨 (Ge W K). 物理学报 (Chinese Journal of Physics), 2003, 52 (10): 2632-2637
[6] Willander M, Nur O, Zhao Q X, Yang L L, Lorenz M, Cao B Q, Pérez J Z, Czekalla C, Zimmermann G, Grundmann M, Bakin A, Behrends A, Al-Suleiman M, El-Shaer A, Mofor A C, Postels B, Waag A, Boukos N, Travlos A, Kwack H S, Guinard J, Le Si Dang D. Nanotechnology, 2009, 20: art.no.332001
[7] Chang W Y, Fang T H, Weng C I, Yang S S. Appl. Phys. A, 2011, 102: 705-711
[8] Ozgur U, Hofstetter D, Morkoc H. IEEE Proc., 2010, 98: 1255-1268
[9] Wang Z L. Appl. Phys.A, 2007, 88: 7-15
[10] Li H, Huang Y H, Zhang Q, Liu J, Zhang Y. Solid State Sci., 2011, 13: 658-661
[11] Lee M K, Ho C L, Lin C C, Cheng N R, Houng M H, Chien Y K, Yen C F. J. Electrochem. Soc., 2011, 158: D286-D289
[12] Zhou X, Gu S, Wu Z, Zhu S, Ye J, Liu S, Zhang R, Shi Y, Zheng Y D. Appl. Surface Sci., 2006, 253: 2226-2229
[13] Ling B, Sun X W, Zhao J L, Tan S T, Dong Z L, Yang Y, Yu H Y, Qi K C. Phys. E, 2009, 41: 635-639
[14] Fu H K, Cheng C L, Wang C H, Lin T Y, Chen Y F. Adv. Funct. Mater., 2009, 19: 3471-3475
[15] Venkatachalam S, Kanno Y. Current Appl. Phys., 2009, 9: 1232-1236
[16] Lee J Y, Lee J H, Kim H S, Lee C H, Ahn H S, Cho H K, Kim Y Y, Kong B H, Lee H S. Thin Solid Films, 2009, 517: 5157-5160
[17] Nadarajah A, Word R C, Meiss J, Konenkamp R. Nano Lett., 2008, 8: 534-537
[18] Sun X W, Huang J Z, Wang J X, Xu Z. Nano Lett., 2008, 8: 1219-1223
[19] Taguchi T. IEEJ Trans, 2008, 3: 21-26
[20] Guo H H, Lin Z H, Feng Z F, Lin L L, Zhou J Z. J. Phys. Chem. C, 2009, 113: 12546-12550
[21] Djurii Dc' A B, Ng A M C, Chen X Y. Prog. Quant. Electron., 2010, 34: 191-259
[22] Choi Y S, Kang J W, Hwang D K, Park S J. IEEE Trans. Elect. Dev., 2010, 57: 26-41
[23] David C L. J. Elect. Mater., 2005, 35: 1299-1305
[24] 叶志镇 (Ye Z Z), 曾昱嘉 (Zeng Y J), 卢洋藩 (Lu Y F), 何海平 (He H P). 中国科技论文在线 (Science Paper Online), 2007, 2 (5): 317-319
[25] 杨广武 (Yang G W),张海明 (Zhang H M),陈国相 (Chen G X).中国材料科技与设备(Chinese Materials Science Technology & Equipment), 2007, (1): 35-37
[26] Yamauchi S, Goto Y, Hariu T. J. Cryst. Growth., 2004, 260: 1-6
[27] Guo X L, Tabata H, Kawai T. Cryst. Growth, 2002, 237/239: 544-547
[28] Alvi N H, Willander M, Nur O. Superlattices Microstruct., 2010, 47: 754-761
[29] Kishwar S, Hasan K, Tzamalis G, Nur O, Willander M, Kwack H S, Dang D L S. Phys. Status Solidi (a), 2010, 207: 67-72
[30] Alvi N H, ul Hasan K, Nur O, Willander M. Nanoscale Res. Lett., 2011, 6: art. no. 130-136
[31] Bano N, Hussain I, Nur O, Willander M, Klason P, Henry A. Semicond. Sci. Technol., 2009, 24: art. no. 125015
[32] Kishwar S, Hasan K, Alvi N H, Klason P, Nur O, Willander M. Superlattices Microstruct., 2011, 49: 32-42
[33] Alvi N H, Usman A S M, Hussain S, Nur O, Willander M. Scripta Mater., 2011, 64: 697-700
[34] Willander M, Nur O, Bano N, Sultana K. New J. Phys., 2009, 11: art. no. 125020
[35] Sadaf J R, Israr M Q, Kishwar S, Nur O, Willander M. Nanoscale Res. Lett., 2010, 5: 957-960
[36] Alvi N H, Riaz M, Tzamalis G, Nur O, Willander M. Semicond. Sci. Technol., 2010, 25: art. no. 065004
[37] Willander M, Asif M H, Zaman S, Zainelabdin A, Bano N, Al-Hilli S M, Nur O. Phys. Status Solidi (c), 2009, 6 (12): 2683-2694
[38] Willander M, Nur O. Journal of Jilin Normal University (Natural Science Edition), 2009, (3): 1-10
[39] Chen C H, Chang S J, Chang S P, Li M J, Chen I C, Hsueh T J, Hsu A D, Hsu C L. J. Phys. Chem. C, 2010, 114: 12422-12426
[40] Ahn C H, Han W S, Kong B H, Cho H K. Nanotechnology, 2009, 20: art. no. 015601
[41] Le H Q, Lim S K, Goh G K L, Chua S J, Ang N S S, Liu W. Appl. Phys. B, 2010, 100: 705-710
[42] Le H Q, Chua S J. J. Phys. D: Appl. Phys., 2011, 44: art. no. 125104
[43] Tan S T, Zhao J L, Iwan S, Sun X W, Tang X H, Ye J D, Bosman M, Tang L J, Lo G Q, Teo K L. Electron Dev., 2010, 57(1): 129-133
[44] Thiyagarajan P, Kottaisamy M, Rama N, Ramachandra R M S. Scripta Mater., 2008, 59: 722-725
[45] Sessolo M, Bolink H J. Adv. Mater., 2011, 23: 1829-1845
[46] Lee C Y, Wang J Y, Chou Y, Cheng C L, Chao C H, Shiu S C, Hung S C, Chao J J, Liu M Y, Su W F, Chen Y F, Lin C F. Nanotechnology, 2009, 20: art. no. 425202
[47] Wadeasa A, Tzamalis G, Sehati P, Nur O, Fahlman M, Willander M, Berggren M, Crispin X. Chem. Phys. Lett., 2010, 490: 200-204
[48] Willander M, Nur O, Zaman S, Zainelabdin A, Bano N, Hussain I. J. Phys. D: Appl. Phys., 2011, 44: art. no. 224017
[49] Zaman S, Zainelabdin A, Amin G, Nur O, Willander M. Appl. Phys. A, 2011, 104: 1203-1209
[50] Zainelabdin A, Zaman S, Amin G, Nur O, Willander M. Nanoscale Res. Lett., 2010, 5: 1442-1448
[51] Son D I, You C H, Kim W T, Kim T W. Nanotechnology, 2009, 20: art. no. 365206
[52] Bano N, Zaman S, Zainelabdin A, Hussain S, Hussain I, Nur O, Willander M. J. Appl. Phys., 2010, 108: art. no. 043103
[53] Dai Q Q, Duty C E, Hu M Z. Small, 2010, 6: 1577-1588
[54] Ye S, Xiao F, Pan Y X, Ma Y Y, Zhang Q Y. Mater. Sci. Eng. R., 2010, 71: 1-34
[55] Klingshirn C, Fallert J, Zhou H, Sartor J, Thiele C, Maier-Flaig F, Schneider D, Kalt H. Phys. Status Solidi (b), 2010, 247: 1424-1447
[56] Uthirakumar P, Hong C H, Suh E K, Lee Y S. Chem. Mater., 2006, 18: 4990-4992
[57] Uthirakumar P, Lee Y S, Suh E K, Hong C H. J. Lumin., 2008, 128: 287-296
[58] Sharma P K, Dutta R K, Kumar M, Singh P K, Pandey A C, Singh V N. IEEE Trans. Nanotechnology, 2011, 10: 163-169
[59] Sharma P K, Kumar M, Pandey A C. J. Nano. Res., 2011, 13: 1629-1637
[60] Dai J, Ji Y, Xu C X, Sun X W, Leck K S, Ju Z G. Appl. Phys. Lett., 2011, 99: art. no. 063112
[1] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[2] 袁传军, 王猛, 李明, 包金鹏, 孙鹏瑞, 高荣轩. 基于碳点的发光材料在潜在手印显现中的应用[J]. 化学进展, 2022, 34(9): 2108-2120.
[3] 职怡缤, 于兰, 李欢欢, 陶冶, 陈润锋, 黄维. 芳基硅磷光主体材料在有机电致发光器件中的应用[J]. 化学进展, 2022, 34(5): 1109-1123.
[4] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[5] 蒋云波, 李欢欢, 陶冶, 陈润锋, 黄维. 热活化延迟荧光聚合物及其电致发光器件[J]. 化学进展, 2019, 31(8): 1116-1128.
[6] 康永印, 宋志成, 乔培胜, 杜向鹏, 赵飞. 光致发光胶体量子点研究及应用[J]. 化学进展, 2017, 29(5): 467-475.
[7] 姜鸿基*, 张庆维. 三苯基膦氧基团在合成高性能有机电致发光材料中的应用[J]. 化学进展, 2016, 28(10): 1515-1527.
[8] 钟渤凡, 王世荣, 肖殷, 李祥高. 有机电致发光器件中的双极性蓝光荧光材料[J]. 化学进展, 2015, 27(8): 986-1001.
[9] 刘杰, 江漫, 梅咏梅, 吴占超*, 匡少平. 白光发光二极管用单一基质白光荧光粉[J]. 化学进展, 2013, 25(12): 2068-2079.
[10] 苏斌, 赵静, 刘春波, 车广波, 王庆伟, 徐占林. 基于8-羟基喹啉及其衍生物的有机小分子电致发光材料[J]. 化学进展, 2013, 25(07): 1090-1101.
[11] 马治军, 雷霆, 裴坚*, 刘晨江*. 蓝色有机电致磷光主体材料[J]. 化学进展, 2013, 25(06): 961-974.
[12] 张驰, 刘治田*, 沈陟, 刘菁. 聚合物发光电化学池[J]. 化学进展, 2012, 24(07): 1359-1367.
[13] 周丽霞, 刘淑娟, 赵强, 凌启淡, 黄维. 基于离子型铱配合物的发光电化学池[J]. 化学进展, 2011, 23(9): 1871-1882.
[14] 张其土, 张乐, 韩朋德, 陈雁, 杨浩, 王丽熙. 白光LED用光转换无机荧光粉[J]. 化学进展, 2011, 23(6): 1108-1122.
[15] 密保秀, 王海珊, 高志强, 王旭鹏, 陈润锋, 黄维. 小分子有机电致发光器件和材料的研究及应用[J]. 化学进展, 2011, 23(01): 136-152.
阅读次数
全文


摘要

基于纳米ZnO的白光LED