English
新闻公告
More
化学进展 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池Sn基合金负极材料

褚道葆*1, 李建1, 袁希梅1,2, 李自龙1, 魏旭1, 万勇1   

  1. 1. 安徽省功能性分子固体、分子基材料重点实验室 安徽师范大学化学与材料科学学院 芜湖 241000;
    2. 南陵恒昌铜箔制造有限公司 南陵 241300
  • 收稿日期:2011-12-01 修回日期:2012-02-01 出版日期:2012-08-24 发布日期:2012-08-06
  • 通讯作者: 褚道葆 E-mail:dbchu@sina.com

Tin-Based Alloy Anode Materials for Lithium Ion Batteries

Chu Daobao1, Li Jian1, Yuan Ximei1,2, Li Zilong1, Wei Xu1, Wan Yong1   

  1. 1. Anhui Key Laboratory of Functional Molecular Solids and Molecule Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China;
    2. Nanling Hengchang Cuprum Foil Corporation Limited, Nanling 241300, China
  • Received:2011-12-01 Revised:2012-02-01 Online:2012-08-24 Published:2012-08-06
发展高安全性、高能量、低成本、长寿命锂离子电池是当前动力电池应用面临的巨大挑战。电池的性能主要取决于正负极电极材料的性能。Sn基合金负极具有高能量和安全特性,是一种很有产业化前景的锂离子电池负极材料。本文综述了Sn基合金电极作为锂离子电池负极的最新研究进展,对Sn基合金负极的不同制备方法进行了总结,重点介绍了锡基合金负极材料在电化学性能方面所存在的问题及其原因,包括锡基活性物质的损失、SEI膜和氧化膜的形成、纳米粒子的团聚和锂离子嵌入过程中死锂的产生等影响合金充放电性能的因素,最后展望了以提高Sn基合金负极电化学性能为目的的研究趋势。
Development of high safety, high energy, low cost and long service life Li ion rechargeable batteries is current a tremendous challenge for power battery application. The performance of the battery mainly depends on the nature of anode and cathode materials.Tin-based alloy is an industrially promising anode material for lithium ion batteries due to its high energy capacity and safety characteristics. In this review, the recent progress in Sn-based alloy anode materials for lithium ion batteries are reviewed.The different preparation methods of Sn-based alloy anodes are summarized. This review focuses on the problems in electrochemical properties of the Sn-based alloy anode and their causes, including the effect of loss of active material, SEI film and oxide film formation, aggregation of alloy particles and generation of dead lithium in the process of the intercalation of lithium ions on the charge and discharge performance of the alloy anode. The research trends in improving the electrochemical performance of the Sn-based alloy anode are prospected. Contents 1 Introduction
2 Preparation methods of Sn-based alloy anodes
2.1 Chemical reduction method
2.2 High energy ball milling method
2.3 Electro-deposition method
2.4 Hydrothermal method
2.5 Magnetron sputter plating method
2.6 Plasma reaction method
3 Cause of irreversible capacity and cyclic capacity fade
3.1 Loss of active material in Sn-based alloy anodes
3.2 SEI film and oxide film formation on surface of grain boundary
3.3 Aggregation of alloy particles
3.4 Generation of dead lithium
4 Approaches for improving anode performance
4.1 Multiphase matrix composites
4.2 Porous structure electrodes
4.3 Nano-structure electrodes
4.4 Preparation of thin film
5 Conclusions and outlook

中图分类号: 

()
[1] Goodenough J B, Kim Y. Chem. Mater., 2010, 22: 587-603
[2] Hu Y S, Guo Y G, Dominko R, Gaberscek M, Jamnik J, Maier J. Adv. Mater., 2007, 19: 1963-1966
[3] 褚道葆 (Chu D B), 李艳 (Li Y), 宋奇(Song Q),周莹(Zhou Y). 物理化学学报(Acta Physico-Chimica Sinica), 2011,27(8) : 1863-1867
[4] Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T. Science, 1997, 276: 1395-1397
[5] Winter M, Besenhard J O. Electrochim. Acta, 1999, 45: 31-50
[6] Zhang C Q, Tu J P, Huang X H,Yuan Y F, Wang S F, Mao F. J. Alloys Compd., 2008, 457: 81-85
[7] Cui W J, Wang F, Wang J, Liu H J, Wang C X, Xia Y Y. J. Power Sources, 2011, 196: 3633-3639
[8] Ju S H, Jang H C, Kang Y C. J. Power Sources, 2009, 189: 163-168
[9] Yang R, Huang J, Zhao W, Lai W Z, Zhang X Z, Zheng J, Li X G. J. Power Sources, 2010, 195: 6811-6816
[10] Wolfenstine J, Campos S, Foster D, Read J, Behl W K. J. Power Sources, 2002, 109: 230-233
[11] Alcántara R, Rodríguez I, Tirado J L. ChemPhysChem, 2008, 9: 1171-1177
[12] Wang Z,Tian W, Liu X, Yang R, Li X G. J. Solid State Chem., 2007, 180: 3360-3365
[13] Xia Z P, Lin Y, Li Z Q. Mater. Charact., 2008, 59: 1324-1328
[14] Ehrlich G M, Durand C, Chen X, Hugener T A, Spiess F, Suib S L. J. Electrochem. Soc., 2000, 147: 886-891
[15] Hassoun J, Mulas G, Panero S, Scrosati B. Electrochem. Commun., 2007, 9: 2075-2081
[16] Wang G X, Sun L, Bradhurst D H, Dou S X, Liu H K. J. Alloys Compd., 2000, 299: 12-15
[17] Wolfenstine J, Campos S, Foster D, Read J, Behl W K. J. Power Sources, 2002, 109: 230-233
[18] Kasavajjula U, Wang C, Appleby A J. J. Power Sources, 2007, 163: 1003-1039
[19] Gnanamuthu R M, Lee C W. Mater. Sci. Eng. B, 2011, 176: 1329-1332
[20] Ke F S, Huang L, Jiang H H, Wei H B, Yang F Z, Sun S G. Electrochem. Commun., 2007, 9: 228-232
[21] Hassoun J, Panero S, Simon P, Taberna P L, Scrosati B. Adv. Mater., 2007, 19: 1632-1635
[22] Wang Y X, Huang L, Chang Y Q, Ke F S, Li J T, Sun S G. Electrochem. Commun., 2010, 12: 1226-1229
[23] Fan X Y, Kea F S, Wei G Z, Huang L, Sun S G. J. Alloys Compd., 2009, 476: 70-73
[24] Jiang D D, Tian H Y, Qiu C C, Ma X H, Fu Y B. J. Solid State Electrochem., 2010, doi 10.1007/s10008-010-1251-1
[25] Xue L J, Xu Y F, Huang L, Ke F S, He Y, Wang Y X, Wei G Z, Li J T, Sun S G. Electrochim. Acta, 2011, 56: 5979-5987
[26] Huang L, Yang Y, Xue L J, Wei H B, Ke F S, Li J T, Sun S G. Electrochem. Commun., 2009, 11: 6-9
[27] He J C, Zhao H L, Wang J, Wang J, Chen J B. J. Alloys Compd., 2010, 508: 629-635
[28] Hou X H, Hu S J, Peng W, Zhang Z W, Ru Q. Acta Metall Sin., 2010, 23: 363-369
[29] Wang Z, Tian W H, Li X G. J. Alloys Compd., 2007, 439: 350-354
[30] Kim H, Choi J H, Sohn H J, Kang T. J. Electrochem. Soc., 1999, 146: 4401-4405
[31] Yang J, Wachtler M, Winter M, Besenhard J O. Electrochem. Solid-State Lett., 1999, 2: 161-163
[32] Wachtler M, Winter M, Besenhard J O. J. Power Sources, 2002, 105: 151-160
[33] Wachtler M, Besenhard J O, Winter M. J. Power Sources, 2001, 94: 189-193
[34] Kim J W, Ryu J H, Lee K T, Oh S M. J. Power Sources, 2005, 147: 227-233
[35] Wang C S, Appleby A J, Little F E. J. Power Sources, 2001, 93: 174-185
[36] Vaughey J T, Fransson L, Swinger H A, Edström K, Thackeray M M. J. Power Sources, 2003, 119/121: 64-68
[37] Beaulieu L Y, Eberman K W, Turner R L, Krause L J, Dahn J R. Electrochem. Solid-State Lett., 2001, 4: A137-A140
[38] Kepler K D, Vaughey J T, Thackeray M M. J. Power Sources, 1999, 81/82: 383-387
[39] Ulus A, Rosenberg Y, Burstein L, Peled E. J. Electrochem. Soc., 2002, 149: A635-A643
[40] Li H, Shi L, Lu W, Huang X, Chen L. J. Electrochem. Soc., 2001, 148: A915-A922
[41] Ota H, Sato T, Suzuki H, Usami T. J. Power Sources, 2001, 97/98: 107-113
[42] Li H, Huang X, Chen L. Electrochem. Solid-State Lett., 1998, 1: 241-245
[43] Alcantara R, Fernandez-Madrigal F J, Lavela P, Tirado J L, Jumas J C, Olivier-Fourcade J. J. Mater. Chem., 1999, 9: 2517-2521
[44] Stjerndahl M, Bryngelsson H, Gustafsson T, Vaughey J T, Thackeray M M, Edstrom K. Electrochim. Acta, 2007, 52: 4947-4955
[45] Aurbach D, Zinigrad E, Cohen Y, Teller H. Solid State Ionics, 2002, 148: 405-416
[46] Li J T, Swiatowska J, Seyeux A, Huang L, Maurice V, Sun S G, Marcus P. J. Power Sources, 2010, 195: 8251-8257
[47] Li J Z, Li H. J. Power Sources, 1999, 81/82: 335-339
[48] Kim S P, van Duin A C T, Shenoy V B. J. Power Sources, 2011, 196: 8590- 8597
[49] Yang C R, Song J Y, Wang Y Y, Wan C C. J. Appl. Electrochem., 2000, 30: 29-34
[50] Kim J H, Jeong G J, Kim Y W, Sohn H J, Park C W, Lee C K. J. Electrochem. Soc., 2003, 150: A1544-A1547
[51] Huang Z W, Hu S J, Hou X H, Ru Q, Yu H W, Zhao L Z, Li W S. Chin. Sci. Bull., 2009, 54: 1003-1008
[52] Kim H, Choi J, Sohn H J, Kang T. J. Electrochem. Soc., 1999, 146: 4401-4405
[53] Limthongkul P, Jang Y I, Dudney N J, Chiang Y M. J. Power Sources, 2003, 119/121: 604-609
[54] Ferguson P P, Dunlap R A, Dahn J R. J. Electrochem. Soc., 2010, 157: A326-A332
[55] Huang Z W, Hu S J, Hou X H, Ru Q, Yu H W, Zhao L Z, Li W S. Chin. Sci. Bull., 2009, 54: 1003-1008
[56] Li H, Shi L, Wang Q, Chen L, Huang X. Solid State Ionics, 2002, 148: 247-258
[57] Matsuno S, Noji M, Kashiwagi T, Nakayama M, Wakihara M. J. Phys. Chem. C, 2007, 111: 7548-7553
[58] Li H, Huang X J, Chen L Q, Zhou G W, Zhang Z, Yu D P, Mo Y J, Pei N. Solid State Ionics, 2000, 135: 181-191
[59] Sharma S, Fransson L, Sjostedt E, Nordstrom L, Johansson B, Edstrom K. J. Electrochem. Soc., 2003, 150: A330-A334
[60] Lee S J, Lee H Y, Jeong S H, Baik H K, Lee S M. J. Power Sources, 2002, 111: 345-349
[61] Shin H C, Liu M. Adv. Funct. Mater., 2005, 15: 582-586
[62] Tamura N, Fujimoto M, Kamino M, Fujitani S. Electrochim. Acta, 2004, 49: 1949-1956
[63] Fang L, Chowdari B V R. J. Power Sources, 2001, 97/98: 181-184
[64] Guo H, Zhao H, Jia X. Electrochem. Commun., 2007, 9: 2207-2211
[65] Cheng X Q, Shi P F. J. Alloys Compd., 2005, 391: 241-244
[66] Mukaibo H, Sumi T, Yokoshima T, Momma T, Osaka T. Electrochem. Solid-State Lett., 2003, 6: A218-A220
[67] Kim Y L, Lee H Y, Jang S W, Lee S J, Baik H K, Yoon Y S, Park Y S, Lee S M. Solid State Ionics, 2003, 160: 235-240
[68] Kim D G, Kim H, Sohn H J, Kang T. J. Power Sources, 2002, 104: 221-225
[69] Zhao H P, Jiang C Y, He X M, Ren J G, Wan C R. Ionics, 2008, 14: 113-120
[70] Ke F S, Huang L, Wei H B, Cai J S, Fan X Y, Yang F Z, Sun S G. J. Power Sources, 2007, 170: 450-455
[71] Kim H, Cho J. Electrochim. Acta, 2007, 52: 4197-4201
[72] Xie J, Zhao X B, Cao G S, Tu J P. J. Power Sources, 2007, 164: 386-389
[73] Guo H, Zhao H, Jia X, Li X, Qiu W. Electrochim. Acta, 2007, 52: 4853-4857
[74] Dahn J R, Mar R E, Abouzeid A. J. Electrochem. Soc., 2006, 153: A361-A365
[75] Ortiz G F, Alcantara R, Rodriguez I, Tirado J L. J. Electroanal. Chem., 2007, 605: 98-108
[76] Lee H Y, Jang S W, Lee S M, Lee S J, Baik H K. J. Power Sources, 2002, 112: 8-12
[77] Shen D, Yang S B, Wu X G, Mi H. Chem. J. Chin. Univ., 2011, 32(10): 2367-2370
[78] Dong Q F, Wu C Z, Jin M G, Huang Z C, Zheng M S, You J K, Lin Z G. Solid State Ionics, 2004, 167: 49-54
[79] Vītina I, Belmane V, Krūmina A, Rubene V. Surf. Coat. Technol., 2011, 205: 2893-2898
[80] Mulas G, Enzo S, Minella C B, Arca E, Gerbaldi C, Penazzi N, Bodoardo S, Hassoun J, Panero S. J. Solid State Electrochem., 2009, 13: 239-243
[81] Yang J, Takeda Y, Imanishi N, Yamamoto O. J. Electrochem. Soc., 1999, 146: 4009-4013
[82] Yang J, Winter M, Besenhard J O. Solid State Ionics, 1996, 90: 281-287
[83] Wang F, Zhao M, Song X. J. Power Sources, 2008, 175: 558-563
[84] Fernandez-Madrigal F J, Lavela P, Vicente C P, Tirado J L, Jumas J C, Olivier-Fourcade J. Chem. Mater., 2002, 14: 2962-2968
[85] Mukaibo H, Osaka T, Reale P, Panero S, Scrosati B, Wachtler M. J. Power Sources, 2004, 132: 225-228
[86] Yang J, Takeda Y, Imanishi N, Xie J Y, Yamamoto O. Solid State Ionics, 2000, 133: 189-194
[87] Park C M, Sohn H J. Electrochim. Acta, 2009, 54: 6367-6372
[88] Zhao J, Wang L, He X, Wan C, Jiang C. Electrochim. Acta, 2008, 53: 7048-7053
[89] Yan H, Sokolov S, Lytle J C, Stein A, Zhang F, Smyrl W. J. Electrochem. Soc., 2003, 150: A1102-A1107
[90] Luo Q, Liu Z J, Li L, Xie S H, Kong J L, Zhao D. Adv. Mater., 2001, 13: 286-289
[91] Jung H R, Kim E J, Park Y J, Shin H C. J. Power Sources, 2011, 196: 2122-2127
[92] Yoshio M, Tsumura T, Dimov N. J. Power Sources, 2005, 146: 10-14
[93] Huang L, Wei H B, Ke F S, Fan X Y, Li J T, Sun S G. Electrochim. Acta, 2009, 54: 2693-2698
[94] Fan X Y, Zhuang Q, Wei G, Huang L, Dong Q, Sun S G. J. Appl. Electrochem., 2009, 39: 1323-1330
[95] Nishikawa K, Dokko K, Kinoshita K, Woo S W, Kanamura K. J. Power Sources, 2009, 189: 726-729
[96] Chan C K, Peng H L, Liu G, McIlwrath K, Zhang X, Huggins R, Cui Y. Nat. Nanotechnol., 2008, 3: 31-35
[97] Aberna P L, Mitra S, Poizot P, Simon P, Tarascon J M. Nat. Mater., 2006, 5: 567-573
[98] Duan H N, Gnanaraj J, Chen X P, Li B Q, Liang J Y. J. Power Sources, 2008, 185: 512-518
[99] Besenhard J O, Yang J, Winter M. J. Power Sources, 1997, 68: 87-90
[100] Courtney I A, Dahn J R. J. Electrochem. Soc., 1997, 144: 2943-2948
[101] Pereira N, Klein L C, Amatucci G G. Solid State Ionics, 2004, 167: 29-40
[102] Aricò A S, Bruce P, Scrosati B, Tarascon J M, Schalkwijk W V. Nat. Mater., 2005, 4: 366-377
[103] Winter M, Besenhard J O, Spahr M E, Novak P. Adv. Mater., 1998, 10: 725-763
[104] Kim I, Blomgren G E, Kumta P N. Electrochem. Solid-State Lett., 2003, 6: A157-A161
[105] Todd A D W, Ferguson P P, Barker J G, Fleischauer M D, Dahn J R. J. Electrochem. Soc., 2009, 156: A1034-A1040
[106] Beaulieu L Y, Larcher D, Dunlap R A, Dahn J R. J. Electrochem. Soc., 2000, 147: 3206-3212
[107] Besenhard J O, Yang J, Winter M. J.Power Sources, 1997, 68: 87-90
[108] Lee K L, Jung J Y, Lee S W, Moon H S, Park J W. J. Power Sources, 2004, 129: 270-274
[109] Chen L B, Xie J Y, Yu H C, Wang T H. J. Appl. Electrochem., 2009, 39: 1157-1162
[110] Hatchard T D, Obrovac M N, Dahn J R. J. Electrochem. Soc., 2006, 153: A282-A287
[111] Kim J B, Lee H Y, Lee K S, Lim S H, Lee S M. Electrochem. Commun., 2003, 5: 544-548
[112] Takamura T, Uehara M, Suzuki J, Sekine K, Tamura K. J. Power Sources, 2006, 158: 1401-1404
[113] Moon T, Kim C, Park B. J. Power Sources, 2006, 155: 391-394
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[3] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[4] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[5] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[6] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[7] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[8] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[9] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[10] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[11] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[12] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[13] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[14] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[15] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
阅读次数
全文


摘要

锂离子电池Sn基合金负极材料