English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

固液界面纳米气泡研究

李大勇*1,2, 王伟杰1, 赵学增*1   

  1. 1. 哈尔滨工业大学机电工程学院 哈尔滨 150001;
    2. 黑龙江科技学院机械工程学院 哈尔滨 150027
  • 收稿日期:2012-01-01 修回日期:2012-03-01 出版日期:2012-08-24 发布日期:2012-08-06
  • 通讯作者: 李大勇, 赵学增 E-mail:lidayong_78@163.com; zhaoxz@hit.edu.cn
  • 基金资助:

    哈尔滨工业大学微系统与微结构制造教育部重点实验室开放基金(No.HIT.KLOF.2009009)资助

Nanobubbles on the Immersed Substrates

Li Dayong1,2, Wang Weijie1, Zhao Xuezeng1   

  1. 1. School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin 150001, China;
    2. School of Mechanical Engineering, Heilongjiang Institute of Science and Technology, Harbin 150027, China
  • Received:2012-01-01 Revised:2012-03-01 Online:2012-08-24 Published:2012-08-06
固液界面纳米气泡是近十年来表面科学的重要发现之一。从利用原子力显微镜(AFM)在固液界面上观察到纳米气泡以来,科学工作者们已经证实了纳米气泡在固液界面上存在。由于其在微机电系统(MEMS)、微生化系统、表面科学、流体动力学等领域潜在的应用价值,各国学者们对纳米气泡的自身性质及影响因素已经开展了多方面的研究。但纳米气泡稳定性(反常的长寿)的原因仍然是未解决的问题之一。本文综述了纳米气泡的形成及影响因素,重点评述了纳米气泡稳定性理论,包括线张力理论、动态平衡理论、杂质理论和克努森气体理论等。同时,介绍了固液界面纳米气泡的应用,并展望了未来研究的重点和方向。
Surface nanobubbles is one significant discovery in interfacial physics in recent decade. Scientists have confirmed their existence since the surface nanobubbles were observed by using atomic force microscope (AFM). Studies of nanobubbles' properties and influence factors have been developed deeply because of its potential applications in microelectromechanical system (MEMS), micro biochemical system, hydrodynamics, surface science, etc. The stability (abnormal longevity ) of nanobubbles, however, is still one of open questions. The latest research results of nanobubbles' stability are mainly reviewed in this paper, including line tension theory, dynamic balance theory, impurity theory and Knudsen gas type theory. Additionally, the applications, influences and formation of nanobubbles are sketchily introduced. In the end, we give some suggestions on what still needs to be done to obtain a full understanding of nanobubbles. Contents 1 Introduction
2 Formation and influence factors of nanobubbles
2.1 Formation of nanobubbles
2.2 Influence factors of nanobubbles
3 Stability of nanobubbles
3.1 Line tension theory
3.2 Dynamic balance theory
3.3 Impurity theory
3.4 Knudsen gas type theory
4 Applications of nanobubbles
5 Conclusion and outlook

中图分类号: 

()
[1] Parker J L, Claesson P M, Attard P. J. Phys. Chem., 1994, 98: 8468-8480
[2] Lou S T, Ouyang Z Q, Zhang Y, Li X J, Hu J, Li M Q, Yang F J. J. Vac. Sci. Technol. B, 2000, 18, 2573-2575
[3] Ishida N, Inoue T, Miyahara M, Higashitani K. Langmuir, 2000, 16: 6377-6380
[4] Hampton M A, Nguyen A V. Advances in Colloid and Science, 2010, 154: 30-55
[5] 张雪花(Zhang X H), 胡钧(Hu J). 化学进展(Progress in Chemistry), 2004, 16 (5): 673-681
[6] Seddon J R T, Lohse D. J. Phys. Condensed Matter, 2011, 23(13): art. no. 133001
[7] Borkent B M, de Beer S S, Mugele F, Lohse D. Langmuir, 2010, 26(1): 260-268
[8] Zhang X H, Maeda N, Craig V S J. Langmuir, 2006, 22(11): 5025-5035
[9] Zhang L, Zhang Y, Zhang X, Li Z, Shen G, Ye M, Fan C, Fang H, Hu J. Langmuir, 2006, 22(19): 8109-8113
[10] Borkent B M, Schonherr H, Caer G L, Dollet B, Lohse D. Phys. Rev. E, 2009, 80: art. no. 036315
[11] Seddon J R T, Kooij E S, Poelsema B, Zandvliet H J W, Lohse D. Physical Review Letters, 2011, 106(5): art. no. 056101
[12] Ducker W A. Langmuir, 2009, 25(16): 8907-8910
[13] Zhang X H, Li G, Maeda N, Hu J. Langmuir, 2006, 22(22): 9238-9243
[14] Zhang L, Zhang X, Fan C, Zhang Y, Hu J. Langmuir, 2009, 25(16): 8860-8864
[15] Hampton M A, Nguyen A V. Miner. Eng., 2009, 22: 786-792
[16] 吴志华(Wu Z H), 张雪花(Zhang X H), 张晓东(Zhang X D), 孙洁林(Sun J L), 董亚明(Dong Y M), 胡钧(Hu J). 科学通报(Chinese Science Bulletin), 2007, 52(6): 629-634
[17] Wu Z H, Zhang X H, Zhang X D, Sun J L, Dong Y M, Hu J. Chin. Sci. Bull., 2007, 52(14): 1913-1919
[18] Tao Y J, Liu J T, Yu S, Tao D. Separation Science and Technology, 2006, 41(16): 3597-3607
[19] Zhou Z A, Chow R S, Cleyle P, Xu Z H, Masliyah J H. Canadian Metallurgical Quarterly, 2010, 49: 363-372
[20] Zhou Z A, Xu Z H, Finch J A, Masliyah J H, Chow R S. Miner. Eng., 2009, 22(5): 419-433
[21] Wang Y L, Bhushan B, Zhao X. Langmuir, 2009, 25(16): 9328-9336
[22] Wang Y L, Bhushan B. Soft Matter, 2010, 6: 29-66
[23] Holmberg M, Kuhle A, Garnaes J, Morch K A, Boisen A. Langmuir, 2003, 19(25): 10510-10513
[24] Yang J W, Duan J M, Fornasier D, Ralston J. Journal of Physical Chemistry B, 2003, 107(25): 6139-6147
[25] Li Z X, Zhang X H, Zhang L J, Zeng X C, Hu J, Fang H P. J. Phys. Chem. B, 2007, 111(31): 9325-9329
[26] Wang C L, Li Z X, Li J Y, Xiu P, Hu J, Fang H P. Chinese Physics B, 2008, 17(7): 2646-2654
[27] Yang S, Dammer S M, Bremond N, Zandvliet H J W, Kooij E S, Lohse D. Langmuir, 2007, 23(13): 7072-7077
[28] Zhang X H, Zhang X D, Lou S T, Zhang Z X, Sun J L, Hu J. Langmuir, 2004, 20(9): 3813-3185
[29] Zhang X H, Li G, Wu Z H, Zhang X D, Hu J. Chin. Phys., 2005, 14(9): 1774-1778
[30] Borkent B M, Dammer S M, Schonherr H, Vancso G J, Lohse D. Phys. Rev. Lett., 2007, 98: art. no. 204502
[31] Zhang X H, Khan A, Ducker W A. Phys. Rev. Lett., 2007, 98: art. no. 136101
[32] Yang S, Kooij E S, Poelsema B, Lohse D, Zandvliet H J W. Euro. Physics Letters, 2008, 81: art. no. 64006
[33] Yang S, Tsai P, Kooij E S, Prosperetti A, Zandvliet H J W, Lohse D. Langmuir, 2009, 25(3): 1466-1474
[34] Brenner M P, Lohse D. Phys. Rev. Lett., 2008, 101(21): art. no. 214505
[35] De Gennes P G. Langmuir, 2002, 18(9): 3413-3414
[36] 张立娟(Zhang L J). 中国科学院上海应用物理研究所博士学位论文(Doctoral Dissertation of Shanghai Institute of Applied Physics, Chinese Academy of Sciences), 2007
[37] Kunert C, Harting J, Vinogradova O I. Phys. Rev. Lett., 2010, 105: art. no. 016001
[38] Bazant M Z, Vinogradova O I. J. Fluid Mech., 2008, 613: 125-134
[39] Steinberger A, Cottin-Bizonne C, Kleimann P, Charlaix E. Nat. Mater., 2007, 6: 665-668
[40] Van Limbeek M A J, Seddon J R T. Langmuir, 2011, 27: 8694-8699
[41] Zhang X H, Quinn A, Ducker W A. Langmuir, 2008, 24(9): 4756-4764
[42] Yang J, Duan J, Fornasiero D, Ralston J. J. Phys. Chem. B, 2003, 107(25): 6139-6147
[43] Kameda N, Nakabayashi S. Jpn. J. Appl. Phys., 2008, 47(2): 1065-1067
[44] Zhang X H, Maeda N, Craig V S J. Langmuir, 2006, 22 (11): 5025-5035
[45] Jin F, Li J F, Ye X D, Wu C. J. Phys. Chem. B, 2007, 111(40): 11745-11749
[46] Seddon J R T, Zandvliet H J W, Lohse D. Physical Review Letters, 2011, 107(11): art. no. 116101
[47] Drelich J, Miller J D. Colloids and Surfaces, 1992, 69(1): 35-43
[48] Boruvka L, Neumann A W. J. Chem. Phys., 1977, 66(12): 5464-5482
[49] Mugele F, Becker T, Nikopoulos R, Kohonen M, Herminghaus S. Journal of Adhesion Science and Technology, 2002, 16(7): 951-964
[50] Grigera J R, Kalko S G, Fischbarg J. Langmuir, 1996, 12(1): 154-158
[51] Jensen M O, Mouritsen O G, Peters G H. J. Chem. Phys., 2004, 120(20): 9729-9744
[52] Mamatkulov S I, Khabibullaev P K, Netz R R. Langmuir, 2004, 20(11): 4756-4763
[53] Dammer S, Lohse D. Phys. Rev. Lett., 2006, 96(20): art. no. 206101
[54] Luzar A, Bratko D. J. Phys. Chem. B, 2005, 109(47): 22545-22552
[55] Bratko D, Luzar A. Langmuir, 2008, 24(4): 1247-1253
[56] Ball P. Nature, 2003, 423(6935): 25-26
[57] Leung K, Luzar A, Bratko D. Phys. Rev. Lett., 2003, 90(6): art. no. 065502
[58] Checco A, Schollmeyer H, Daillant J, Guenoun P, Boukherroub E. Langmuir, 2006, 22(1): 116-126
[59] Kameda N, Nakabayashi S. Surface Sci., 2008, 602(8): 1579-1584
[60] Das S, Snoeijer J H, Lohse D. Phys. Rev. E, 2010, 82(5): art. no. 056310
[61] Das S. Phys. Rev. E, 2011, 83: art. no. 066315
[62] 张立娟(Zhang L J), 陈浩(Chen H), 李朝霞(Li Z X), 方海平(Fang H P), 胡钧(Hu J). 中国科学G辑(Science in China Series G), 2007, 37(4): 556-560
[63] Darwich S, Mougin K, Vidal L, Gnecco E, Haidara H. Nanoscale, 2011, 3: 1211-1217
[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[4] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[5] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[6] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[7] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[8] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[9] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[10] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[11] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[12] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[13] 淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926.
[14] 林巧霞, 殷萌, 魏延, 杜晶晶, 陈维毅, 黄棣. 钛及钛合金表面羟基磷灰石涂层结合强度及稳定性[J]. 化学进展, 2020, 32(4): 406-416.
[15] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
阅读次数
全文


摘要

固液界面纳米气泡研究