English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

高活性、高抗毒性的甲酸燃料电池阳极催化剂

卢学毅, 廖世军, 宋慧宇*   

  1. 华南理工大学化学与化工学院 广州 510641
  • 收稿日期:2011-10-01 修回日期:2012-01-01 出版日期:2012-08-24 发布日期:2012-08-06
  • 通讯作者: 宋慧宇 E-mail:hysong@scut.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21076089, 20876062)和华南理工大学中央高校基本科研业务费项目资助

Highly Active and Highly Poison Tolerant Anodic Catalysts for Direct Formic Acid Fuel Cells

Lu Xueyi, Liao Shijun, Song Huiyu   

  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
  • Received:2011-10-01 Revised:2012-01-01 Online:2012-08-24 Published:2012-08-06
甲酸燃料电池是一种近年发展起来的新型燃料电池,具有极好的商业化前景,但其发展受到很多因素的制约,其中阳极催化剂是影响其性能的关键因素。本文从催化剂的制备方法、催化剂载体和掺杂其他元素等方面介绍了近年来国内外在提高催化剂的活性和抗毒性方面所做的重要研究工作。具体包括:电沉积法、有机溶胶法等重要制备方法,碳纳米管、石墨烯和复合材料作为催化剂载体的研究以及通过掺杂其他元素制备合金催化剂和复合催化剂来提高催化剂活性和抗毒性的相关研究工作。本文还对甲酸燃料电池的发展做了展望。
Formic acid fuel cell is a kind of fuel cell developed in recent years with promising commercial prospects. However, its development and commercialization are restricted by some factors, in which anodic catalyst is recognized as one of the most important factors. In this paper, some significant researches and attempts of promoting catalytic activity and poison tolerance are introduced, including novel preparation approaches, usage of novel supporting materials, as well as the design of multi-component catalyst by doping hetero elements. Concretely, the researches cover synthetic methods such as electrolytic deposition, organic colloid method, impregnation, study of using carbon nanotubes, graphene and complex materials as supports, and relevant work of adding other elements to prepare alloy catalysts and complex catalysts. Furthermore, the future development of formic acid fuel cell is also prospected. Contents 1 Introduction
2 Synthetic technology
2.1 Electrolytic deposition
2.2 Organic colloid method
3 Effect of different supports on catalytic activity
3.1 Carbon nanotube
3.2 Graphene
3.3 Complex materials
4 Addition of other elements
4.1 Pt-based catalysts
4.2 Pd-based catalysts
5 Effect of structures on activity and stability
5.1 Core-shell structure
5.2 Hollow nanosphere structure
5.3 Nanowire stru cture
6 Conclusions and outlook

中图分类号: 

()
[1] Chen C H, Liou W J, Lin H M, Wu S H, Borodzinski A, Stobinski L, Kedzierzawski P. Fuel Cells, 2010, 10(2): 227-233
[2] Jeong K J, Miesse C A, Choi J H, Lee J, Han J, Yoon S P, Nam S W, Lim T H, Lee T G. Journal of Power Sources, 2007, 168: 119-125
[3] Rice C, Ha S, Masel R I, Waszczuk P, Wieckowski A, Barnard T. Journal of Power Sources, 2002, 111(1): 83-89
[4] Zhu Y M, Khana Z, Masel R I. Journal of Power Sources, 2005, 139(1/2): 15-20
[5] Haan J L, Masel R I. Electrochimica Acta, 2009, 54(16): 4073-4078
[6] Wang Y, Wu X, Wu B, Gao Y. Journal of Power Sources, 2009, 189(2): 1020-1022
[7] Rigsby M A, Zhou W P, Lewera A, Duong H T, Bagus P S, Jaegermann W, Hunger R, Wieckowski A. The Journal of Physical Chemistry C, 2008, 112(39): 15595-15601
[8] Huang Y, Zhou X, Liao J, Liu C, Lu T, Xing W. Electrochemistry Communications, 2008, 10(8): 1155-1157
[9] 衣宝廉(Yi B L). 燃料电池--原理 ·技术 ·应用(Fuel Cells: Theory, Technology and Appliction). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2003.6
[10] 刘凤君(Liu F J). 高效环保的燃料电池发电系统及其应用(High Efficient and Environmental Fuel Cell System and Application). 北京: 机械工业出版社(Beijing: China Machine Press), 2005.12
[11] Uhm S, Lee J K, Chung S T, Lee J. Journal of Industrial and Engineering Chemistry, 2008, 14: 493-498
[12] Wang J Y, Kang Y Y, Yang H, Cai W B. The Journal of Physical Chemistry C, 2009, 113(19): 8366-8372
[13] Wu Y N, Liao S J, Su Y L, Zeng J H, Dang D. Journal of Power Sources, 2010, 195(19): 6459-6462
[14] Uhm S, Lee H J, Kwon Y, Lee J. Angewandte Chemie, 2008, 47: 10163-10166
[15] Pandey R K, Lakshminarayanan V. The Journal of Physical Chemistry C, 2009, 113(52): 21596-21603
[16] El-Deab M S, Kibler L A, Kolb D M. Electrochemistry Communications, 2009, 11: 776-778
[17] Meng H, Sun S, Masse J P, Dodelet J P. Chemistry of Materials, 2008, 20(22): 6998-7002
[18] Schrebler R, Delralle M A, Gomez H, Veas C, Cordova R. Journal of Electroanalytical Chemistry, 1995, 380(1/2): 219-227
[19] Chi N, Chan K Y, Phillips D L. Catalysis Letters, 2001, 71(1): 21-26
[20] Jayashree R, Spendelow J, Yeom J, Rastogi C, Shannon M, Kenis P. Electrochimica Acta, 2005, 50(24): 4674-4682
[21] 廖世军(Liao S J), 李映伟(Li Y W). 石油化工(Petrochemical Technology), 2009, 38(5): 469-475
[22] 唐志诚(Tang Z C), 吕功煊(Lv G X). 化学进展(Progress in Chemistry), 2007, 19(9): 1301-1311
[23] 张玲玲(Zhang L L), 唐亚文(Tang Y W), 陆天虹(Lu T H), 周益明(Zhou Y M), 李邨(Li C). 南京师大学报(Journal of Nanjing Normal University), 2006, 29(3): 58-61
[24] Selvaraj V, Grace A N, Alagar M. Journal of Colloid and Interface Science, 2009, 333(1): 254-262
[25] Tedsree K, Li T, Jones S, Chan C W A, Yu K M K, Bagot P A J, Marquis E A, Smith G D W, Tsang S C E. Nat. Nano, 2011, 6(5): 302-307
[26] 刘洋(Liu Y), 邓超(Deng C), 邬冰(Wu B), 高颖(Gao Y). 化学工程师(Chemical Engineer), 2010, 2(2): 5-7
[27] Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson D P. Journal of Power Sources, 2006, 155(2): 95-110
[28] Che G, Lakshmi B B, Martin C R, Fisher E R. Langmuir, 1999, 15(3): 750-758
[29] Rajesh B, Karthik V, Karthikeyan S, Thampi K R, Bonard J M, Viswanathan B. Fuel, 2002, 81(17): 2177-2190
[30] Liu Z, Lin X, Lee J Y, Zhang W, Han M, Gan L M. Langmuir, 2002, 18(10): 4054-4060
[31] Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q. The Journal of Physical Chemistry B, 2003, 107(26): 6292-6299
[32] Matsumoto T, Komatsu T, Nakano H, Arai K, Nagashima Y, Yoo E, Yamazaki T, Kijima M, Shimizu H, Takasawa Y, Nakamura J. Catalysis Today, 2004, 90(3/4): 277-281
[33] Yang S, Zhang X, Mi H, Ye X. Journal of Power Sources, 2008, 175(1): 26-32
[34] Bai Z, Guo Y, Yang L, Li L, Li W, Xu P, Hu C, Wang K. Journal of Power Sources, 2011, 196: 6232-6237
[35] Wang Y, Shao Y, Matson D W, Li J, Lin Y. ACS Nano, 2010, 4(4): 1790-1798
[36] Seger B, Kamat P V. The Journal of Physical Chemistry C, 2009, 113(19): 7990-7995
[37] Yoo E, Okata T, Akita T, Kohyama M, Nakamura J, Honma I. Nano Letters, 2009, 9(6): 2255-2259
[38] Scheuermann G M, Rumi L, Steurer P, Bannwarth W, Muilhaupt R. Journal of the American Chemical Society, 2009, 131(23): 8262-8270
[39] Guo S, Dong D, Wang E. ACS Nano, 2009, 4(1): 547-555
[40] Xu C, Wang X, Zhu J. The Journal of Physical Chemistry C, 2008, 112(50): 19841-19845
[41] Bong S, Uhm S, Kim Y R, Lee J, Kim H. Electrocatalysis, 2010, 1(2/3): 139-143
[42] Zhang S, Shao Y, Liao H G, Liu J, Aksay I A, Yin G, Lin Y. Chemistry of Materials, 2011, 23(5): 1079-1081
[43] Zhao H, Yang J, Wang L, Tian C G, Jiang B J, Fu H G. Chemical Communications, 2011, 2014-2016
[44] Wang X M, Xia Y Y. Electrochemistry Communications, 2009, 11: 28-30
[45] Feng L G, Yan L, Cui Z M, Liu C P, Xing W. Journal of Power Sources, 2011, 196: 2469-2474
[46] Zhou W, Du Y, Zhang H, Xu J, Yang P. Electrochimica Acta, 2010, 55(8): 2911-2917
[47] Wang X, Tang Y W, Gao Y, Lu T. Journal of Power Sources, 2008, 175: 784-788
[48] Zhang S, Qing M, Zhang H, Tian Y. Electrochemistry Communications, 2009, 11(11): 2249-2252
[49] Li X, Hsing I M. Electrochimica Acta, 2006, 51(17): 3477-3483
[50] Yu X W, Pickup P G. Journal of Power Sources, 2009, 192: 279-284
[51] Morales-Acosta D, Ledesma-Garcia J, Godinez L A, Rodriguez H G, lvarez-Contreras L, Arriaga L G. Journal of Power Sources, 2010, 195: 461-465
[52] 樊博(Fan B), 郭玉国(Guo Y G), 万立骏(Wan L J). 化 学 进 展(Progress in Chemistry), 2010, 22(5): 852-860
[53] Rice C, Ha S, Masel R I, Wieckowski A. Journal of Power Sources, 2003, 115: 229-235
[54] Ha S, Rice C A, Masel R I, Wieckowski A. Journal of Power Sources, 2002, 112(2): 655-659
[55] Choi J H, Jeong K J, Dong Y, Han J, Lim T H, Lee J S, Sung Y E. Journal of Power Sources, 2006, 163(1): 71-75
[56] Peng B, Wang H F, Liu Z P, Cai W B. J. Phys. Chem. C, 2010, 114: 3102-3107
[57] Yang H Z, Dai L, Xu D, Fang J Y, Zou S. Electrochimica Acta, 2010, 55: 8000-8004
[58] Xu J B, Zhao T S, Liang Z X. Journal of Power Sources, 2008, 185: 857-861
[59] Uhm S H, Chung S T, Lee J. Electrochemistry Communications, 2007, 9: 2027-2031
[60] Schmidt T J, Grgur B N, Behm R J, Markovic N M, Ross J P N. Physical Chemistry Chemical Physics, 2000, 2(19): 4379-4386
[61] Zhang L J, Wang Z Y, Xia D G. Journal of Alloys and Compounds, 2006, 426: 268-271
[62] Liu B, Li H Y, Die L, Zhang X H, Fan Z, Chen J H. Journal of Power Sources, 2009, 186: 62-66
[63] Chhina H, Campbell S, Kesler O. Journal of Power Sources, 2007, 164(2): 431-440
[64] Garin F. Catalysis Today, 2004, 89(3): 255-268
[65] Ha S, Larsen R, Zhu Y. Fuel Cells, 2004, 4: 337-343
[66] Ha S, Larsen R, Masel R I. Journal of Power Sources, 2005, 144: 28-34
[67] 周全(Zhou Q), 张存中(Zhang C Z), 陆晓林(Lu X L), 吴仲达(Wu Z D). 电化学(Journal of Electrochemistry), 2000, 6: 329-334
[68] Larsen R, Ha S, Zakzeski J, Masel R I. Journal of Power Sources, 2006, 157(1): 78-84
[69] Shobha T, Aravinda C L, Bera P, Devi L G, Mayanna S M. Materials Chemistry and Physics, 2003, 80(3): 656-661
[70] Du C, Chen M, Wang W, Yin G. Applied Materials & Interfaces, 2010, 3(2): 105-109
[71] Wang R, Liao S, Ji S. Journal of Power Sources, 2008, 180: 205-208
[72] Yu X W, Pickup G P. Electrochemistry Communications, 2010, 12: 800-803
[73] Wang X M, Xia Y. Electrochemistry Communications, 2008, 10: 1644-1646
[74] Liu Z L, Hong L, Thama M P, Lima T H, Jiang H. Journal of Power Sources, 2006, 161: 831-835
[75] Du C Y, Chen M, Wang W G, Yin G P, Shi P F. Electrochemistry Communications, 2010, 12(6): 843-846
[76] Zhang L L, Tang Y W, Bao J C, Lu T H, Li C. Journal of Power Sources, 2006, 162: 177-179
[77] 李文震(Li W Z), 孙公权(Sun G Q), 严玉山(Yan Y S), 辛勤(Xin Q). 化学进展(Progress in Chemistry), 2005, 17(5): 761-772
[78] Min M, Cho J, Cho K, Kim H. Electrochimica Acta, 2000, 45: 4211-4217
[79] 李焕芝(Li H Z), 沈娟章(Shen J Z), 杨改秀(Yang G X), 唐亚文(Tang Y W), 陆天虹(Lu T H). 高等学校化学学报(Chemical Journal of Chinese Universities), 2011, 32(7): 1445-1450
[80] Jung W S, Han J H, Yoon S P, Nam S W, Lim T H, Hong S A. Journal of Power Sources, 2009, 196(10): 4573-4578
[81] Seo M H, Lim E J, Choi S M, Nam S H, Kim H J, Kim W B. International Journal of Hydrogen Energy, 2011, 36(18): 11545-11553
[82] 刘宾(Liu B), 廖世军(Liao S J), 梁振兴(Liang Z X). 化学进展(Progress in Chemistry), 2011, 23(5): 852-859
[83] Zeng J, Yang J, Lee J Y, Zhou W. The Journal of Physical Chemistry B, 2006, 110(48): 24606-24611
[84] Kim S W, Kim M, Lee W Y, Hyeon T. Journal of the American Chemical Society, 2002, 124(26): 7642-7643
[85] Liang H P, Zhang H M, Hu J S, Guo Y G, Wan L J, Bai C L. Angewandte Chemie International Edition, 2004, 43(12): 1540-1543
[86] Fang B Z, Kim M, Yu J S. Applied Catalysis B: Environmental, 2008, 84: 100-105
[87] Jeona H, Jooa J, Kwona Y, Uhmb S, Lee J. Journal of Power Sources, 2010, 195: 5929-5933
[88] Li R, Hao H, Cai W B, Huang T, Yu A. Electrochemistry Communications, 2010, 12(7): 901-904
[89] Bai Z Y, Yang L, Li L, Lv J, Wang K, Zhang J. J. Phys. Chem. C, 2009, 113: 10568-10573
[90] Bashyam R, Zelenay P. Nature, 2006, 443(7): 63-66
[91] Ge J, Xing W, Xue X, Liu C, Lu T, Liao J. The Journal of Physical Chemistry C, 2007, 111(46): 17305-17310
[1] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[2] 段东红 孙彦平. 直接硼氢化物燃料电池(DBFC)阳极材料及反应机理*[J]. 化学进展, 2010, 22(09): 1720-1728.
[3] 魏建良,王先友,易四勇,戴春岭,李娜. 直接硼氢化物燃料电池[J]. 化学进展, 2008, 20(09): 1427-1432.