English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

离子液体支撑液膜分离CO2

段永超, 伍艳辉*, 于世昆, 李佟茗   

  1. 同济大学化学系 上海 200092
  • 收稿日期:2011-10-01 修回日期:2011-12-01 出版日期:2012-07-24 发布日期:2012-06-30
  • 通讯作者: 伍艳辉 E-mail:wuyanhui@tongji.edu.cn
  • 基金资助:

    上海市自然科学基金项目(No.10ZR1432000)和中央高校基本科研业务费专项资金资助

Separation of CO2 with Supported Ionic Liquid Membrane

Duan Yongchao, Wu Yanhui, Yu Shikun, Li Dongming   

  1. Department of Chemistry, Tongji University, Shanghai 200092, China
  • Received:2011-10-01 Revised:2011-12-01 Online:2012-07-24 Published:2012-06-30
支撑液膜是一种在湿法冶金、生物技术以及气体分离等多个领域都有应用的重要膜分离技术。本文回顾了支撑液膜技术分离CO2的研究进展,按照液膜相的不同,分类介绍了常规载体支撑液膜和离子液体支撑液膜,指出了常规载体支撑液膜分离CO2的局限性,重点介绍了离子液体支撑液膜分离CO2的发展,分析了气体在离子液体支撑液膜中的传质机理以及常规离子液体结构、含量和支撑膜材料等对分离效果的影响;讨论了离子液体的功能化方法以及功能化离子液体支撑液膜分离CO2的渗透率、选择性和液膜稳定性;介绍了两种新的离子液体支撑液膜改进方法:聚离子液体膜与凝胶化离子液体支撑液膜。最后指出了今后用于CO2分离的离子液体支撑液膜的发展方向。
Supported liquid membrane (SLM) is a kind of important membrane technique which has applications in many fields such as hydrometallurgy, biotechnology, gas separation, etc. A thorough summary of recent developments of supported liquid membranes used in the field of CO2 separation is provided. In this paper, two kinds of supported liquid membranes with different membrane phases, conventional carriers supported liquid membranes and supported ionic liquid membranes (SILMs), are introduced respectively. And the limits of conventional carriers supported liquid membrane are pointed out. The transport mechanism of gas in the SILMs is analyzed firstly. Then the progress of different SILMs are discussed intensively. For conventional ionic liquid membranes, the discussions focus on how the structure and content of ionic liquid as well as the support material influence the membrane performance. For task-specific ionic liquid membrane, different methods of functionalization and the CO2 permeability, selectivity and the liquid membrane stability of the corresponding supported task specific ionic liquid membranes are analyzed. Two kinds of new modification methods for supported ionic liquid membrane, poly (ionic liquid) membrane and supported gelled ionic liquid membrane, are also introduced. On this basis, the possible prospects of supported ionic liquid in the future are given. Contents
1 Introduction
2 Supported liquid membrane with conventional solvent as membrane phase
3 Supported ionic liquid membrane
3.1 Transport mechanism of gas in supported ionic liquid membrane
3.2 Conventional ionic liquid as membrane phase
3.3 Task-specific ionic liquid as membrane phase
4 New progress in supported ionic liquid membrane
4.1 Poly(ionic liquid) membrane
4.2 Gelled ionic liquid as membrane phase
5 Conclusions and outlook

中图分类号: 

()
[1] Ward W J, Robb W L. Science, 1967, 156: 1481-1481
[2] Teramoto M, Nakai K, Ohnishi N, Huang Q F, Watari T, Matsuyama H. Ind.Eng.Chem.Res., 1996, 35: 538-545
[3] Al Marzouqi M H, Abdulkarim M A, Marzouk S A, El-Naas M H, Hasanain H M. Ind.Eng.Chem.Res., 2005, 44: 9273-9278
[4] Chen H, Kovvali A S, Majumdar S, Sirkar K K. Ind. Eng. Chem. Res., 1999, 38: 3489-3498
[5] Kovvali A S, Sirkar K K. Ind. Eng. Chem. Res., 2002, 41: 2287-2295
[6] Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Nature, 1999, 399: 28-29
[7] Cadena C, Anthony J L, Shah J K, Morrow T I, Brennecke J F, Maginn E J. J. Am. Chem. Soc., 2004, 126(16): 5300-5308
[8] Anthony J L, Anderson J L, Maginn E J, Brennecke J F. J. Phys. Chem. B, 2005, 109: 6366-6374
[9] Scovazzo P, Kieft J, Finan D A, Koval C, DuBois D, Kieft J, Noble R D. J. Membr. Sci., 2004, 238: 57-63
[10] Stern S A. J. Membr. Sci., 1994, 94(1): 1-65
[11] Neves L A, Nemestothy N, Alves V D, Cserjesi P, Belafi-Bakob K, Coelhoso I M. Desalination, 2009, 240: 311-315
[12] Park Y I, Kim B S, Byun Y H, Lee S H, Lee E W, Lee J M. Desalination, 2009, 236: 342-348
[13] Fortunato R, González M J, Kubasiewicz M, Luque S, lvarez J R, Afonso C A M, Coelhoso I M, Crespo J G. J. Membr. Sci., 2005, 249: 153-162
[14] Fortunato R, Afonso C A M, Benavente J, Rodriguez-Castellón E, Crespo J G. J. Membr. Sci., 2005, 256: 216-223
[15] Neves L A, Crespo J G, Coelhoso I M. J. Membr. Sci., 2010, 357: 160-170
[16] Zhao W, He G H, Zhang L L, Ju J, Dou H, Nie F, Li C N, Liu H J. J.Membr.Sci., 2010, 350: 279-285
[17] Myers C, Pennline H, Luebke D, Ilconich J, Dixon J K, Maginn E J, Brennecke J F. J. Membr. Sci., 2008, 322: 28-31
[18] Ilconich J, Myers C, Pennline H, Luebke D. J.Membr.Sci., 2007, 298: 41-47
[19] Jiang Y Y, Wu Y T, Wang W T, Li L, Zhou Z, Zhang Z B. Chinese J. Chem. Eng., 2009, 17(4): 594-601
[20] Lee S H, Kim B S, Lee E W, Park W I, Lee J M. Desalination, 2006, 200: 21-22
[21] Yoo S, Wona J, Kang S J, Kang Y S, Nagase S. J. Membr. Sci., 2010, 363: 72-79
[22] Baltus R E, Counce R M, Culbertson B H, Luo H M, DePaoli D W, Dai S, Duckworth D C. Sep. Sci. Technol., 2009, 40 (1): 525-541
[23] Gan Q, Rooney D, Xue M L, Thompson G, Zou Y R. J. Membr. Sci., 2006, 280: 948-956
[24] Bates E D, Mayton R D, Ntai I, Davis J H. J. Am. Chem. Soc., 2002, 124 (6): 926-927
[25] Hanioka S, Maruyama T, Sotani T, Teramoto M, Matsuyama H, Nakashima K, Hanaki M, Kubota F, Goto M. J. Membr. Sci., 2008, 314: 1-4
[26] Bara J E, Gabriel C J, Carlisle T K, Camper D E, Finotello A, Gina D L, Noble R D. Chem. Eng. J., 2009, 147: 43-50
[27] Mahurin S M, Lee J S, Baker G A, Luo H M, Dai S. J. Membr. Sci., 2010, 353: 177-183
[28] 侯亚伟(Hou Y W).华东师范大学博士学位论文(Doctoral Dissertation of East China Normal University), 2009
[29] Muldoon M J, Aki A N, Anderson J L, Dixon J K, Brennecke J F. J. Phys. Chem. B, 2007, 111: 9001-9009
[30] Carlisle T K, Bara J E, Gabriel C J, Noble R D, Gin D L. Ind. Eng. Chem. Res., 2008, 47: 7005-7012
[31] Fukumoto K, Yoshizawa M, Ohno H. J. Am. Chem. Soc., 2005, 127: 2398-2399
[32] Gurkan B E, Fuente J C, Mindrup E M, Ficke L E, Goodrich B F, Price E A, Schneider W F, Brennecke J F. J. Am. Chem. Soc., 2010, 132: 2116-2117
[33] Zhang J M, Zhang S J, Dong K, Zhang Y Q, Shen Y Q, Lv X M. Chem. Eur. J., 2006, 12: 4021-4026
[34] Bara J E, Lessmann S, Gabriel C J, Hatakeyama E S, Noble R D, Gin D L. Ind. Eng. Chem. Res., 2007, 46: 5397-5404
[35] Carlisle T K, Bara J E, Lafrate A L, Gina D L, Noble R D. J. Membr. Sci., 2010, 359: 37-43
[36] Hudiono Y C, Carlisle T K, Bara J E, Zhang Y F, Gina D L, Noble R D. J. Membr. Sci., 2010, 350: 117-123
[37] Hudiono Y C, Carlisle T K, LaFrate A L, Gin D L, Noble R D. J. Membr. Sci., 2011, 370: 141-148
[38] Neplenbroek A M, Bargeman D, Smolders C A. J. Membr. Sci., 1992, 67: 149-165
[39] 张锁江(Zhang S J),吕兴梅(Lü X H). 离子液体从基础研究到工业应用(Ionic Liquid-From Basic Research to Industrial Application). 北京: 科学出版社(Beijing: Science Press), 2006
[40] Vioux A, Viau L, Volland S, Bideau J L. C. R. Chim., 2010, 13: 242-255
[41] Bideau J L, Viau L, Vioux A. Chemical Society Reviews, 2011, 40: 907-925
[42] 谭磊(Tan L).华中科技大学博士学位论文(Doctoral Dissertation of Huazhong University of Science and Technology),2009
[43] Fukushima T, Kosak A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aid T. Science, 2003, 300: 2072-2074
[44] Firestone M A, Dzielawa J A, Zapol P, Curtiss L A, Seifert S, Dietz M L. Langmuir, 2002, 18 (20): 7258-7260
[45] Hanabusa K, Fukui H, Suzuki M, Shirai H.Langmuir, 2005, 21: 10383-10390
[46] Ueno K, Hata K, Katakabe T, Kondoh M, Watanabe M. J.Phys.Chem.B, 2008, 112: 9013-9019
[47] Voss B A, Bara J E, Gin D L, Noble R D. Chem. Mater., 2009, 21 (14): 3027-3029
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[4] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[5] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[6] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[7] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[8] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[9] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[10] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[11] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[12] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[13] 王德超, 辛洋洋, 李晓倩, 姚东东, 郑亚萍. 多孔液体在气体捕集与分离领域的应用[J]. 化学进展, 2021, 33(10): 1874-1886.
[14] 李波, 马利建, 罗宁, 李首建, 陈云明, 张劲松. 固相萃取分离铀[J]. 化学进展, 2020, 32(9): 1316-1333.
[15] 黄炎, 刘国东, 张学记. 新型冠状病毒(COVID-19)的检测和诊断[J]. 化学进展, 2020, 32(9): 1241-1251.
阅读次数
全文


摘要

离子液体支撑液膜分离CO2