English
新闻公告
More
化学进展 2012, Vol. 24 Issue (07): 1388-1397 前一篇   后一篇

• 综述与评论 •

天然水体中可溶性有机质的自由基光化学行为

邰超*1,2, 李雁宾2, 阴永光2,3, 蔡勇2, 江桂斌3   

  1. 1. 河南理工大学资源环境学院 焦作 454000;
    2. Department of Chemistry and Biochemistry, Florida International University Miami USA 33199;
    3. 环境化学与生态毒理国家重点实验室 中国科学院生态环境研究中心 北京 100075
  • 收稿日期:2011-09-01 修回日期:2011-11-01 出版日期:2012-07-24 发布日期:2012-06-30
  • 通讯作者: 邰超 E-mail:taichao@hpu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21120102040, 20907062, 40701160)资助

Free Radical Photochemistry of Dissolved Organic Matter in Natural Water

Tai Chao1,2, Li Yanbin2, Yin Yongguang2,3, Cai Yong2, Jiang Guibin3   

  1. 1. Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000, China;
    2. Department of Chemistry and Biochemistry, Florida International University, Miami USA 33199;
    3. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100075, China
  • Received:2011-09-01 Revised:2011-11-01 Online:2012-07-24 Published:2012-06-30
可溶性有机质在天然水体中广泛分布,是全球碳循环的重要组成部分。大部分的可溶性有机质含有苯环、羧基、羟基和羰基等发色团,能够吸收特定波长的太阳光,产生水合电子、单线态氧、羟基自由基等活性自由基,从而影响天然水体污染物的光化学转化以及降解过程。本文综述了20世纪90年代以来可溶性有机质的自由基光化学行为以及其在水体污染物转化中的作用方面的研究进展,并探讨了今后研究中应该关注的问题。
Dissolved organic matter (DOM) exists widely in the natural water. It is one of the largest active pools of organic carbon on earth and hence plays an important role in the global carbon cycling. As it contains a large number of chromophores, such as benzene ring, carboxyl, hydroxy, carbonyl, etc., it can adsorb sunlight at certain wavelength regions of the spectrum. A variety of reactive free radicals, such as hydroxyl radicals, singlet oxygen, and hydrated electron, could be generated during this process. These reactive free radicals could play an important role in the photo-transformation and photo-degradation of contaminants in the natural water. In different natural water, the generation of reactive free radicals is very different, resulting the mechanism and pathway of photo-transformation of various contaminats in natural water. This paper reviews the DOM-mediated generating pathways of major reactive radicals, including hydroxyl radicals, singlet oxygen, hydrated electron and excited triplet states of the CDOM. Then influences of them on the photo-transformation and photo-degradation of various contaminants, inculding inorganic ion, methylmercury, polyaromatic hydrocarbon, phenols, and pesticides, etc., in the natural water are discussed. The necessary works in the future research are also briefly outlined. Contents
1 Introduction
2 Free radical photochemistry of dissolved organic matter
2.1 Hydroxyl radicals
2.2 Singlet oxygen
2.3 Hydrated electron
2.4 Excited triplet states of dissolved organic matter
3 Influence of dissolved organic matter on the photo-transformation of various contaminants
3.1 Inorganic ions
3.2 Methyl mercury
3.3 PAHs
3.4 Phenols
3.5 Pesticides
3.6 Other pollutants
4 Conclusions and outlook

中图分类号: 

()
[1] 吴丰昌(Wu F C),王立英(Wang L Y),黎文(Li W),张润宇(Zhang R Y),傅平青(Fu P Q),廖海清(Liao H Q),白英臣(Bai Y C),郭建阳(G J Y),王静(Wang J). 湖泊科学(Lake Science), 2008, 20(1): 1-12
[2] Leenheer J A, Croué J P. Environ. Sci. Technol., 2003, 37(1): 18-26
[3] Sulzberger B, Durisch-Kaiser E. Aquatic Sciences-Research Across Boundaries, 2009, 71(2): 104-126
[4] 黄泽春(Huang Z C),陈同斌(Chen T B),雷梅(Lei M). 生态学报(Acta Ecologica Sinca), 2002, 22(002): 259-269
[5] Chin Y P, Aiken G, OLoughlin E. Environ. Sci. Technol., 1994, 28(11): 1853-1858
[6] Zhou X, Mopper K. Mar. Chem., 1990, 30: 71-88
[7] Salonen K, Vahatalo A. Environ. Int., 1994, 20(3): 307-312
[8] Kumamoto Y, Wang J, Fujiwara K. Bull. Chem. Soc. Jpn., 1994, 67(3): 720-727
[9] Allen J M, Lucas S, Allen S K. Environ. Toxicol. Chem., 1996, 15(2): 107-113
[10] Latch D E, McNeill K. Science, 2006, 311(5768): 1743-1747
[11] Glaeser S P, Grossart H P, Glaeser J. Environ. Microbiol., 2010, 12(12): 3124-3136
[12] Richard C, Canonica S. Environmental Photochemistry Part Ⅱ, 2005, 299-323
[13] Page S E, Arnold W A, Mcneill K. Environ. Sci. Technol., 2011, 45: 2818-2825
[14] Zepp R G, Schlotzhauer P F, Sink R M. Environ. Sci. Technol., 1985, 19(1): 74-81
[15] Vaughan P P, Blough N V. Environ. Sci. Technol., 1998, 32(19): 2947-2953
[16] Vione D, Falletti G, Maurino V, Minero C, Pelizzetti E, Malandrino M, Ajassa R, Olariu R I, Arsene C. Environ. Sci. Technol., 2006, 40(12): 3775-3781
[17] Mopper K, Zhou X. Science, 1990, 250(4981): 661-664
[18] Zepp R G, Wolfe N L, Baughman G L, Hollis R C. Nature, 1977, 267: 421-423
[19] Albinet A, Minero C, Vione D. Sci. Total Environ., 2010, 408(16): 3367-3373
[20] Anastasio C, Mcgregor K G. Atmos. Environ., 2001, 35(6): 1079-1089
[21] Al Housari F, Vione D, Chiron S, Barbati S. Photochem. Photobio. Sci., 2010, 9(1): 78-86
[22] Aguer J P, Richard C, Andreux F. J. Photochem. Photobio. A, 1997, 103(1/2): 163-168
[23] Zepp R G, Braun A M, Hoigne J, Leenheer J A. Environ. Sci. Technol., 1987, 21(5): 485-490
[24] Thomas-Smith T E, Blough N V. Environ. Sci. Technol., 2001, 35(13): 2721-2726
[25] Allen J M, Lucas S, Allen S K. Environ. Toxicol. Chem., 1996, 15(2): 107-113
[26] Zepp R G, Hoigne J, Bader H. Environ. Sci. Technol., 1987, 21(5): 443-450
[27] Brezonik P L, Fulkerson-Brekken J. Environ. Sci. Technol., 1998, 32(19): 3004-3010
[28] Mack J, Bolton J R. J. Photochem. Photobio. A, 1999, 128(1/3): 1-13
[29] Southworth B A, Voelker B M. Environ. Sci. Technol., 2003, 37(6): 1130-1136
[30] White E M, Vaughan P P, Zepp R G. Aquatic Sciences-Research Across Boundaries, 2003, 65(4): 402-414
[31] Canonica S, Freiburghaus M. Environ. Sci. Technol., 2001, 35(4): 690-695
[32] Boreen A L, Edhlund B L, Cotner J B, Mcneill K. Environ. Sci. Technol., 2008, 42(15): 5492-5498
[33] Vaughan P P, Thomas-Smith T E, Blough N V. Abstracts of Papers of The American Chemical Society, 1998, 216(Part 1): 58
[34] Wang W, Zafiriou O C, Chan I Y, Zepp R G, Blough N V. Environ. Sci. Technol., 2007, 41(5): 1601-1607
[35] Steiner J P, Faraggi M, Klapper M H, Dorfman L M. Biochemistry, 1985, 24(9): 2139-2146
[36] Milosavljevic B H, Laverne J A, Pimblott S M. J. Phys. Chem. A, 2005, 109(34): 7751-7756
[37] Mezyk S P, Helgeson T, Cole S K, Cooper W J, Fox R V, Gardinali P R, Mincher B J. J. Phys. Chem. A, 2006, 110(6): 2176-2180
[38] Wojnarovits L, Palfi T, Takacs E, Emmi S S. Radiat. Phys. Chem., 2005, 74(3/4): 239-246
[39] Mezyk S P, Ewing D B, Kiddle J J, Madden K P. J. Phys. Chem. A, 2006, 110(14): 4732-4737
[40] Varghese R, Mohan H, Manoj P, Manoj V M, Aravind U K, Vandana K, Aravindakumar C T. J. Agr. Food Chem., 2006, 54(21): 8171-8176
[41] Huang L, Dong W B, Hou H Q. Chem. Phys. Lett., 2007, 436(1/3): 124-128
[42] Mezyk S P, Neubauer T J, Cooper W J, Peller J R. J. Phys. Chem. A, 2007, 111(37): 9019-9024
[43] Mezyk S P, Hardison D R, Song W H, O’Shea K E, Bartels D M, Cooper W J. Chemosphere, 2009, 77(10): 1352-1357
[44] Jeong J, Song W H, Cooper W J, Jung J, Greaves J. Chemosphere, 2010, 78(5): 533-540
[45] Cooper W J, Zika R G, Petasne R G, Fischer A M. Adv. Chem. Ser., 1989, 219: 333-362
[46] Vialaton D, Richard C. Aquatic Sciences-Research Across Boundaries, 2002, 64(2): 207-215
[47] Canonica S, Jans U, Stemmler K, Hoigne J. Environ. Sci. Technol., 1995, 29(7): 1822-1831
[48] Canonica S, Hellrung B, Wirz J. J. Phys. Chem. A, 2000, 104(6): 1226-1232
[49] Aguer J P, Richard C. Pesticide Science, 1996, 46(2): 151-155
[50] Gerecke A C, Canonica S, Müller S R, Scharer M, Schwarzenbach R P. Environ. Sci. Technol., 2001, 35(19): 3915-3923
[51] Canonica S. Chimia International Journal for Chemistry, 2007, 61(10): 641-644
[52] Guerard J J, Chin Y P, Mash H, Hadad C M. Environ. Sci. Technol., 2009, 43(22): 8587-8592
[53] Xu H, Cooper W J, Jung J, Song W. Water Res., 2011, 45: 632-638
[54] Boreen A L, Edhlund B L, Cotner J B, McNeill K. Environ. Sci. Technol., 2008, 42(15): 5492-5498
[55] Guerard J J, Miller P L, Trouts T D, Chin Y P. Aquat. Sci., 2009, 71(2): 160-169
[56] Wenk J, von Gunten U, Canonica S. Environ. Sci. Technol., 2011, 45: 1334-1340
[57] Kaczynski S E, Kieber R J. Environ. Sci. Technol., 1994, 28(5): 799-804
[58] Gaberell M, Chin Y P, Hug S J, Sulzberger B. Environ. Sci. Technol., 2003, 37(19): 4403-4409
[59] Voelker B M, Morel F, Sulzberger B. Environ. Sci. Technol., 1997, 31(4): 1004-1011
[60] Song W J, Ma W H, Ma J H, Chen C C, Zhao J C. Environ. Sci. Technol., 2005, 39(9): 3121-3127
[61] Meunier L, Laubscher H, Hug S J, Sulzberger B. Aquat. Sci., 2005, 67(3): 292-307
[62] Allard B, Arsenie I. Water, Air, & Soil Pollution, 1991, 56(1): 457-464
[63] Xiao Z F, Strmberg D, Lindqvist O. Water, Air, & Soil Pollution., 1995, 80(1): 789-798
[64] Zhang H, Lindberg S E. Environ. Sci. Technol., 2001, 35(5): 928-935
[65] Buschmann J, Canonica S, Sigg L. Environ. Sci. Technol., 2005, 39(14): 5335-5341
[66] Buschmann J, Canonica S, Lindauer U, Hug S J, Sigg L. Environ. Sci. Technol., 2005, 39(24): 9541-9546
[67] Sellers P, Kelly C A, Rudd J, Machutchon A R. Nature, 1996, 380(6576): 694-697
[68] Kieber R J, Parler N E, Skrabal S A, Willey J D. J. Atmos. Chem., 2008, 60(2): 153-168
[69] Zhang T, Hsu-Kim H. Nature Geoscience, 2010, 3(7): 473-476
[70] Li Y B, Mao Y X, Liu G L, Tachiev G, Roelant D, Feng X B, Cai Y. Environ. Sci. Technol., 2010, 44(17): 6661-6666
[71] Hammerschmidt C R, Fitzgerald W F. Environ. Sci. Technol., 2010, 44(16): 6138-6143
[72] Fasnacht M P, Blough N V. Environ. Sci. Technol., 2002, 36(20): 4364-4369
[73] Bertilsson S, Widenfalk A. Hydrobiologia, 2002, 469(1): 23-32
[74] Xia X H, Li G C, Yang Z F, Chen Y M, Huang G H. Environ. Pollut., 2009, 157(4): 1352-1359
[75] Canonica S, Hoigne J. Chemosphere, 1995, 30(12): 2365-2374
[76] Vialaton D, Richard C, Baglio D, Paya-Perez A B. J. Photoch. Photobio. A, 1998, 119(1): 39-45
[77] Fukushima M, Tatsumi K, Morimoto K. Environ. Toxicol. Chem., 2000, 19(7): 1711-1716
[78] Fukushima M, Tatsumi K. Environ. Sci. Technol., 2001, 35(9): 1771-1778
[79] Tchaikovskaya O N, Solkolloval I V, Yudina N V. Luminescence, 2005, 20(3): 187-191
[80] Xu D, Wu Z B, Xie X L, Deng N S. Fresen. Environ. Bull., 2006, 15(10): 1292-1298
[81] Kepczynski M, Czosnyka A, Nowakowska M. J. Photoch. Photobio. A, 2007, 185(2/3): 198-205
[82] Liu H, Zhao H M, Quan X, Zhang Y B, Chen S. Environ. Sci. Technol., 2009, 43(20): 7712-7717
[83] Kochany J, Maguire R J. J. Agric. Food Chem., 1994, 42(2): 406-412
[84] Mathew R, Khan S U. J. Agric. Food Chem., 1996, 44(12): 3996-4000
[85] Bachman J, Patterson H H. Environ. Sci. Technol., 1999, 33(6): 874-881
[86] Sakkas V A, Lambropoulou D A, Albanis T A. Chemosphere, 2002, 48(9): 939-945
[87] Sakellarides T M, Siskos M G, Albanis T A. Int. J. Environ. Anal. Chem., 2003, 83(1): 33-50
[88] Walse S S, Morgan S L, Kong L, Ferry J L. Environ. Sci. Technol., 2004, 38(14): 3908-3915
[89] Dimou A D, Sakkas V A, Albanis T A. J. Photoch. Photobio. A, 2004, 163(3): 473-480
[90] Dimou A D, Sakkas V A, Albanis T A. Int. J. Environ. Anal. Chem., 2004, 84(1/3): 173-182
[91] Fu H B, Quan X, Liu Z Y, Chen S. Langmuir, 2004, 20(12): 4867-4873
[92] Latch D E, Packer J L, Stender B L, Vanoverbeke J, Arnold W A, McNeill K. Environ. Toxicol. Chem., 2005, 24(3): 517-525
[93] Miller P L, Chin Y P. Environ. Sci. Technol., 2005, 39(12): 4454-4462
[94] Goncalves C, Dimou A, Sakkas V, Alpendurada M F, Albanis T A. Chemosphere, 2006, 64(8): 1375-1382
[95] Lam M W, Mabury S A. Aquat. Sci., 2005, 67(2): 177-188
[96] Sakkas V A, Lambropoulou D A, Albanis T A. J. Photoch. Photobio. A, 2002, 147(2): 135-141
[97] Boreen A L, Arnold W A, McNeill K. Environ. Sci. Technol., 2005, 39(10): 3630-3638
[98] Kieber R J, Helz G R. Environ. Sci. Technol., 1992, 26(2): 307-312
[99] Kaczynski S E, Kieber R J. Environ. Sci. Technol., 1993, 27(8): 1572-1576
[100] Voelker B M, Sulzberger B. Environ. Sci. Technol., 1996, 30(4): 1106-1114
[101] Nriagu J O. Sci. Total Environ., 1994, 154(1): 1-8
[102] Haitzer M, Aiken G R, Ryan J N. Environ. Sci. Technol., 2002, 36(16): 3564-3570
[103] Ravichandran M. Chemosphere, 2004, 55(3): 319-331
[104] Amyot M, McQueen D J, Mierle G, Lean D R S. Environ. Sci. Technol., 1994, 28(13): 2366-2371
[105] Hammerschmidt C R, Fitzgerald W F. Environ. Sci. Technol., 2006, 40(4): 1212-1216
[106] Suda I, Totoki S, Takahashi H. Arch. Toxicol., 1991, 65(2): 129-134
[107] Chen J, Pehkonen S O, Lin C J. Water Res., 2003, 37(10): 2496-2504
[108] Suda I, Suda M, Hirayama K. Arch. Toxicol., 1993, 67(5): 365-368
[109] Tossell J A. J. Phys. Chem. A, 1998, 102(20): 3587-3591
[110] Khwaja A R, Brezonik P L, Bloom P R. Abstracts of Papers of The American Chemical Society, 2001, 222(Part 1): 70
[111] Lehnherr I, Louis V. Environ. Sci. Technol., 2009, 43(15): 5692-5698
[112] Hill J R, O’Driscoll N J, Lean D. Sci. Total Environ., 2009, 408(2): 408-414
[113] Fasnacht M P, Blough N V. Environ. Sci. Technol., 2003, 37(24): 5767-5772
[114] David B, Boule P. Chemosphere, 1993, 26(9): 1617-1630
[115] Shemer H, Linden K G. J. Photoch. Photobio. A, 2007, 187(2/3): 186-195
[116] Tratnyek P G, Holgne J. Environ. Sci. Technol., 1991, 25(9): 1596-1604
[117] Kawaguchi H. J. Contam. Hydrol., 1992, 9(1/2): 105-114
[118] Tratnyek P G, Hoigne J. J. Photoch. Photobio. A, 1994, 84(2): 153-160
[119] Aguer J P, Richard C. J. Photoch. Photobio. A, 1996, 93(2-3): 193-198
[120] Walse S S, Morgan S L, Kong L, Ferry J L. Environ. Sci. Technol., 2004, 38(14): 3908-3915
[121] Canonica S, Hellrung B, Muller P, Wirz J. Environ. Sci. Technol., 2006, 40(21): 6636-6641
[122] Guerard J J, Chin Y P, Mash H, Hadad C M. Environ. Sci. Technol., 2009, 43(22): 8587-8592
[123] Neamtu M, Frimmel F H. Sci. Total Environ., 2006, 369(1/3): 295-306
[124] Chowdhury R R, Charpentier P A, Ray M B. J. Photoch. Photobio. A, 2011, 219(1): 67-75
[1] 王慧悦, 胡欣, 胡玉静, 朱宁, 郭凯. 酶催化原子转移自由基聚合[J]. 化学进展, 2022, 34(8): 1796-1808.
[2] 高文艳, 赵玄, 周曦琳, 宋雅然, 张庆瑞. 提高非均相芬顿催化活性策略、研究进展及启示[J]. 化学进展, 2022, 34(5): 1191-1202.
[3] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[4] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[5] 朱本占, 张静, 唐苗, 黄春华, 邵杰. 致癌性卤代醌类消毒副产物造成 DNA 损伤的分子机理研究[J]. 化学进展, 2022, 34(1): 227-236.
[6] 刘佳, 史俊, 付坤, 丁超, 龚思成, 邓慧萍. 多相催化过硫酸盐工艺处理水环境中有机污染物的非自由基过程[J]. 化学进展, 2021, 33(8): 1311-1322.
[7] 韩文亮, 董林洋. 基于硫酸根自由基的先进氧化活化方法及其在有机污染物降解上的应用[J]. 化学进展, 2021, 33(8): 1426-1439.
[8] 宋欢, 邹琦, 陆克定. HO2非均相摄取系数的测量与参数化[J]. 化学进展, 2021, 33(7): 1175-1187.
[9] 衡婷婷, 张慧, 陈明学, 胡欣, 方亮, 陆春华. 接枝改性PVDF基含氟聚合物[J]. 化学进展, 2021, 33(4): 596-609.
[10] 陈曦, 李喆垚, 陈亚运, 陈志华, 胡艳, 刘传祥. C—H氰烷基化:导向基控制的萘酰亚胺C—H氰烷基化[J]. 化学进展, 2021, 33(11): 1947-1952.
[11] 孙连伟, 孙中鹤, 王雪, 徐林, 冯岸超, 张立群. 可控/“活性”自由基聚合制备聚乙烯及聚卤代烯烃[J]. 化学进展, 2020, 32(6): 727-737.
[12] 张鹏, 郭心洁, 张倩, 丁彩凤. 有机染料聚集在光化学传感中的应用[J]. 化学进展, 2020, 32(2/3): 286-297.
[13] 翟景琳, 胡欣, 刘成扣, 朱宁, 郭凯. 原子转移自由基聚合接枝改性木质素[J]. 化学进展, 2019, 31(9): 1293-1302.
[14] 李宁, 胡欣, 方亮, 寇佳慧, 倪亚茹, 陆春华. 有机催化原子转移自由基聚合[J]. 化学进展, 2019, 31(6): 791-799.
[15] 刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑. 光化学反应在生物材料表面修饰中的应用[J]. 化学进展, 2019, 31(10): 1425-1439.