English
新闻公告
More
化学进展 2012, Vol. 24 Issue (07): 1378-1387 前一篇   后一篇

• 综述与评论 •

面向食品安全分析的核酸适配体传感技术

梁淼, 刘锐, 苏荣欣*, 齐崴, 王利兵*, 何志敏   

  1. 天津大学化工学院化学工程联合国家重点实验室 天津 300072
  • 收稿日期:2011-10-01 修回日期:2011-11-01 出版日期:2012-07-24 发布日期:2012-06-30
  • 通讯作者: 苏荣欣, 王利兵 E-mail:surx@tju.edu.cn; wanglb@hnciq.gov.cn
  • 基金资助:

    国家科技支撑计划项目(No.2012BAD29B05)、国家自然科学基金项目(No.20806057)和教育部博士点基金项目(No.200800561004)资助

Aptamer-Based Sensing Technology Towards Food Safety Analysis

Liang Miao, Liu Rui, Su Rongxin, Qi Wei, Wang Libing, He Zhimin   

  1. State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received:2011-10-01 Revised:2011-11-01 Online:2012-07-24 Published:2012-06-30
食品中危害因子的检测一直是国内外食品安全领域致力解决的重要问题。核酸适配体是一类通过体外筛选技术得到的单链DNA或RNA,具有特异性强、稳定性好和靶分子广等特点,因而被广泛用于食品安全检测领域。近年来,随着纳米传感技术的快速发展,互补结合适配体和纳米材料的特殊性质,可实现对靶标物质的超灵敏、高选择性及快速检测。本文总结了近年来筛选的食品危害因子适配体,综述了面向食品安全检测的基于适配体传感和纳米材料修饰的分析检测技术的进展,主要包括比色法、荧光法、电化学法以及表面等离子体共振技术,并探讨了适配体传感检测所存在的问题和未来的发展趋势。
Intense works have been undertaken towards development of analytical methods for the detection of risk factors in the food samples. Nucleic-acid aptamers, obtained through in vitro selection and amplification, are artificial single-stranded DNA or RNA sequences that could bind to a wide range of targets with extremely high specificity and stability. These advantages have motivated aptamers to find broad applications towards food safety analysis. In recent years, the combination of aptamers with novel nanomaterials has significantly improved the performance of aptamer-based analytical techniques. In this review, we summarize the recent development of aptamer-based sensors and detection methods, including optical, electrochemical and surface plasmon resonance methods, and highlight their potential application in food safety analysis. Also, the future perspectives of aptamer-based analytical techniques are concluded. Contents
1 Introduction
2 Aptamers for food safety
3 Aptamer-based analytical techniques for food safety
3.1 Colorimetric method
3.2 Fluorescence detection method
3.3 Electrochemical assay
3.4 Surface plasmon resonance technology
4 Challenges for application
5 Conclusion and prospects

中图分类号: 

()
[1] Coppens P, Da Silva M F, Pettman S. Toxicology, 2006, 221: 59-74
[2] Situ C, Mooney M H, Elliott C T, Buijs J. Trends Anal. Chem., 2010, 29: 1305-1315
[3] Yadav R, Dwivedi S, Kumar S, Chaudhury A. Food Environ. Virol., 2010, 2: 53-63
[4] Homola J. Chem. Rev., 2008, 108: 462-493
[5] Vallejo-Cordoba B, Gonzalez-Cordova A F. Electrophoresis, 2010, 31: 2154-2164
[6] Hernandez F, Portoles T, Pitarch E, Lopez F J. Trends Anal. Chem., 2011, 30: 388-400
[7] Karoonuthaisiri N, Charlermroj R, Uawisetwathana U, Luxananil P, Kirtikara K, Gajanandana O. Biosens. Bioelectron., 2009, 24: 1641-1648
[8] Song S, Wang L, Li J, Fan C, Zhao J. Trends Anal. Chem., 2008, 27: 108-117
[9] 李一林(Li Y L), 郭磊(Guo L), 张朝阳(Zhang C Y), 唐吉军(Tang J J), 谢剑炜(Xie J W).中国科学: B 辑(Science in China B-Chemistry), 2008, 38(1): 1-11
[10] 王国庆(Wang G Q), 陈兆鹏(Chen Z P), 陈令新(Chen L X). 化学进展(Progress in Chemistry), 2010, 22(2/3): 489-499
[11] 周玲(Zhou L), 王明华(Wang M H), 王剑平(Wang J P), 叶尊忠(Ye Z Z).分析化学(Chinese Journal of Analytical Chemistry), 2011, 39(3): 432-438
[12] Lee J H, Yigit M V, Mazumdar D, Lu Y. Adv. Drug Deliver. Rev., 2010, 62: 592-605
[13] Iliuk A B, Hu L, Tao W A. Anal. Chem., 2011, 83: 4440-4452
[14] Chen T, Shukoor M I, Chen Y, Yuan Q, Zhu Z, Zhao Z, Gulbakan B, Tan W. Nanoscale, 2011, 3: 546-556
[15] Wang G, Wang Y, Chen L, Choo J. Biosens. Bioelectron., 2010, 25: 1859-1868
[16] Ellington A D, Szostak J W. Nature, 1990, 346: 818-822
[17] Robertson D L, Joyce G F. Nature, 1990, 344: 467-468
[18] Tuerk C, Gold L. Science, 1990, 249: 505-510
[19] Shamah S M, Healy J M, Cload S T. Acc. Chem. Res., 2008, 41: 130-138
[20] Wang H, Wang Y, Jin J, Yang R. Anal. Chem., 2008, 80: 9021-9028
[21] Liu C W, Huang C C, Chang H T. Anal. Chem., 2009, 81: 2383-2387
[22] Stead S L, Ashwin H, Johnston B H, Dallas A, Kazakov S A, Tarbin J A, Sharman M, Kay J, Keely B J. Anal. Chem., 2010, 82: 2652-2660
[23] Cruz-Aguado J A, Penner G. J. Agric. Food Chem., 2008, 56: 10456-10461
[24] He P L, Shen L, Cao Y H, Li D F. Anal. Chem., 2007, 79: 8024-8029
[25] Deng C, Chen J, Nie L, Nie Z, Yao S. Anal. Chem., 2009, 81: 9972-9978
[26] Ikebukuro K, Kiyohara C, Sode K. Biosens. Bioelectron., 2005, 20: 2168-2172
[27] Liu G, Mao X, Phillips J A, Xu H, Tan W, Zeng L. Anal. Chem., 2009, 81: 10013-10018
[28] Liu J, You M X, Pu Y, Liu H X, Ye M, Tan W H. Curr. Med. Chem., 2011, 18: 4117-4125
[29] Barbas A S, Mi J, Clary B M, White R R. Future Oncology, 2010, 6: 1117-1126
[30] Yan A C, Levy M. RNA Biology, 2009, 6: 316-320
[31] Zhou J, Rossi J J. Oligonucleotides, 2010, 21: 1-10
[32] Gong M J, Wehmeyer K R, Halsall H B, Heineman W R. Curr. Pharm. Anal., 2009, 5: 156-163
[33] Sefah K, Phillips J A, Xiong X, Meng L, Van Simaeys D, Chen H, Martin J, Tan W. Analyst, 2009, 134: 1765-1775
[34] Jo M, Ahn J Y, Lee J, Lee S, Hong S W, Yoo J W, Kang J, Dua P, Lee D K, Hong S, Kim S. Oligonucleotides, 2011, 21: 85-91
[35] Stojanovic M N, Landry D W. J. Am. Chem. Soc., 2002, 124: 9678-9679
[36] Kim Y S, Jung H S, Matsuura T, Lee H Y, Kawai T, Gu M B. Biosens. Bioelectron., 2007, 22: 2525-2531
[37] Chang T W, Blank M, Janardhanan P, Singh B R, Mello C, Blind M,Cai S. Biochem. Biophys. Res. Commun., 2010, 396: 854-860
[38] Joshi R, Janagama H, Dwivedi H P, Senthil Kumar T M A, Jaykus L A, Schefers J, Sreevatsan S. Mol. Cell Probe, 2009, 23: 20-28
[39] Stratis-Cullum D N, McMasters S, Pellegrino P M. Anal. Lett., 2009, 42: 2389-2402
[40] Kim J, Kim M Y, Kim H S, Hah S S. Bioorg. Med. Chem. Lett., 2011, 21: 4020-4022
[41] Liu C W, Hsieh Y T, Huang C C, Lin Z H, Chang H T. Chem. Commun., 2008, 2242-2244
[42] Kim Y J, Kim Y, Niazi J,Gu M. Bioprocess Biosyst. Eng., 2010, 33: 31-37
[43] Song K M, Cho M, Jo H, Min K, Jeon S H, Kim T, Han M S, Ku J K, Ban C. Anal. Biochem., 2011, 415: 175-181
[44] Joeng C B, Niazi J H, Lee S J, Gu M B. Bioorgan. Med. Chem., 2009, 17: 5380-5387
[45] He J, Liu Y, Fan M, Liu X. J. Agric. Food Chem., 2011, 59: 1582-1586
[46] Liu J, Lu Y. Angew. Chem. Int. Ed., 2006, 45: 90-94
[47] Liu J, Lu Y. J. Am. Chem. Soc., 2003, 125: 6642-6643
[48] Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J. Nature, 1996, 382: 607-609
[49] Elghanian R, Storhoff J J, Mucic R C, Letsinger R L, Mirkin C A. Science, 1997, 277: 1078-1082
[50] Li L, Li B, Qi Y, Jin Y. Anal. Bioanal. Chem., 2009, 393: 2051-2057
[51] Xue X J, Wang F, Liu X G. J. Am. Chem. Soc., 2008, 130: 3244-3245
[52] Lee J S, Han M S, Mirkin C A. Angew. Chem. Int. Ed., 2007, 46: 4093-4096
[53] Li T, Li B L, Wang E K, Dong S J. Chem. Commun., 2009, 3551-3553
[54] Lu N, Shao C, Deng Z. Analyst, 2009, 134: 1822-1825
[55] Zhang J, Wang L, Pan D, Song S, Boey F Y C, Zhang H, Fan C. Small, 2008, 4: 1196-1200
[56] Baker B R, Lai R Y, Wood M S, Doctor E H, Heeger A J, Plaxco K W. J. Am. Chem. Soc., 2006, 128: 3138-3139
[57] Du Y, Li B, Guo S, Zhou Z, Zhou M, Wang E, Dong S. Analyst, 2011, 136: 493-497
[58] Yang C, Wang Y, Marty J L, Yang X. Biosens. Bioelectron., 2011, 26: 2724-2727
[59] Wang L, Ma W, Chen W, Liu L, Zhu Y, Xu L, Kuang H, Xu C. Biosens. Bioelectron., 2011, 26: 3059-3062
[60] Wang R E, Zhang Y, Cai J, Cai W, Gao T. Curr. Med. Chem., 2011, 18: 4175-4184
[61] Lin Y W, Liu C W, Chang H T. Talanta, 2011, 84: 324-329
[62] Wernette D P, Liu J, Bohn P W, Lu Y. MRS Bull., 2008, 33: 34-41
[63] Swearingen C B, Wernette D P, Cropek D M, Lu Y, Sweedler J V, Bohn P W. Anal. Chem., 2004, 77: 442-448
[64] Wernette D P, Swearingen C B, Cropek D M, Lu Y, Sweedler J V, Bohn P W. Analyst, 2006, 131: 41-47
[65] Chang I H, Tulock J J, Liu J, Kim W S, Cannon D M, Lu Y, Bohn P W, Sweedler J V, Cropek D M. Environ. Sci. Technol., 2005, 39: 3756-3761
[66] Levy M, Cater S F, Ellington A D. Chembiochem, 2005, 6: 2163-2166
[67] Medintz I L, Uyeda H T, Goldman E R, Mattoussi H. Nature Mater., 2005, 4: 435-446
[68] Choi J H, Chen K H, Strano M S. J. Am. Chem. Soc., 2006, 128: 15584-15585
[69] Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff P W, Langer R, Farokhzad O C. Nano Letters, 2007, 7: 3065-3070
[70] Wang L, Chen W, Ma W, Liu L, Ma W, Zhao Y, Zhu Y, Xu L, Kuang H, Xu C. Chem. Commun., 2011, 1574-1576
[71] Liu B H, Tsao Z J, Wang J J, Yu F Y. Anal. Chem., 2008, 80: 7029-7035
[72] Krkkinen R M, Drasbek M R, McDowall I, Smith C J, Young N W G, Bonwick G A. Int. J. Food Sci. Tech., 2011, 46: 445-454
[73] Yakes B J, Deeds J, White K, DeGrasse S L. J. Agric. Food Chem., 2010, 59: 839-846
[74] Vaught J D, Dewey T, Eaton B E. J. Am. Chem. Soc., 2004, 126: 11231-11237
[75] Babkina S S, Ulakhovich N A. Anal. Chem., 2005, 77: 5678-5685
[76] Xiao Y, Rowe A A, Plaxco K W. J. Am. Chem. Soc., 2006, 129: 262-263
[77] Wei H, Li B L, Li J, Dong S J, Wang E K. Nanotechnology, 2008, 19: 5501-5505
[78] Lee J S, Mirkin C A. Anal. Chem., 2008, 80: 6805-6808
[79] Chai F, Wang C A, Wang T T, Li L, Su Z M. ACS Appl. Mater. Interfaces, 2010, 2: 1466-1470
[80] Xu X W, Wang J, Jiao K, Yang X R. Biosens. Bioelectron., 2009, 24: 3153-3158
[81] Yang Y K, Yook K J, Tae J. J. Am. Chem. Soc., 2005, 127: 16760-16761
[82] Li T, Dong S J, Wang E K. J. Am. Chem. Soc., 2010, 132: 13156-13157
[83] Wang H, Kim Y M, Liu H P, Zhu Z, Bamrungsap S, Tan W H. J. Am. Chem. Soc., 2009, 131: 8221-8226
[84] Li J, Lu Y. J. Am. Chem. Soc., 2000, 122: 10466-10467
[85] Liu M C, Zhao G H, Tang Y T, Yu Z M, Lei Y Z, Li M F, Zhang Y A, Li D M. Environ. Sci. Technol., 2010, 44: 4241-4246
[86] Kim Y S, Niazi J H, Gu M B. Anal. Chim. Acta, 2009, 634: 250-254
[87] Zhang J, Zhang B, Wu Y, Jia S, Fan T, Zhang Z, Zhang C. Analyst, 2010, 135: 2706-2710
[88] Kawano R, Osaki T, Sasaki H, Takinoue M, Yoshizawa S, Takeuchi S. J. Am. Chem. Soc., 2011, 133: 8474-8477
[89] Lee J, Jo M, Kim T H, Ahn J Y, Lee D K, Kim S, Hong S. Lab Chip, 2011, 11: 52-56
[90] So H M, Won K, Kim Y H, Kim B K, Ryu B H, Na P S, Kim H, Lee J O. J. Am. Chem. Soc., 2005, 127: 11906-11907
[91] Zelada-Guillen G A, Bhosale S V, Riu J, Rius F X. Anal. Chem., 2010, 82: 9254-9260
[92] Abbas A, Linman M J, Cheng Q. Biosens. Bioelectron., 2011, 26: 1815-1824
[93] Mayer K M, Hafner J H. Chem. Rev., 2011, 111: 3828-3857
[94] Wang J, Zhu Z, Munir A, Zhou H S. Talanta, 2011, 84: 783-788
[95] Kim S, Lee J, Lee S J, Lee H J. Talanta, 2010, 81: 1755-1759
[96] Wang J, Munir A, Li Z, Zhou H S. Biosens. Bioelectron., 2009, 25: 124-129
[97] Wang Q, Huang J, Yang X, Wang K, He L, Li X, Xue C. Sensor. Actuat. B-Chem., 2011, 156: 893-898
[98] de-los-Santos-lvarez N, Lobo-Castaón M J, Miranda-Ordieres A J, Tuón-Blanco P. Biosens. Bioelectron., 2009, 24: 2547-2553
[99] Golub E, Pelossof G, Freeman R, Zhang H, Willner I. Anal. Chem., 2009, 81: 9291-9298
[100] Bruno J G, Phillips T, Carrillo M P, Crowell R. J. Fluoresc., 2009, 19: 427-435
[101] Ohk S H, Koo O K, Sen T, Yamamoto C M, Bhunia A K. J. Appl. Microbiol., 2010, 109: 808-817
[102] Kuang H, Chen W, Xu D, Xu L, Zhu Y, Liu L, Chu H, Peng C, Xu C, Zhu S. Biosens. Bioelectron., 2010, 26: 710-716
[103] Chen L, Xu S, Li J. Chem. Soc. Rev., 2011, 40: 2922-2942
[104] Xu S, Chen L, Li J, Qin W, Ma J. J. Mater. Chem., 2011, 21: 12047-12053
[105] Wang Z, Duan N, Hun X, Wu S. Anal. Bioanal. Chem., 2010, 398: 2125-2132
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[3] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[4] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[5] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[6] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[7] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[8] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[9] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[10] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[11] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[12] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[13] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[14] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[15] 刘阳, 张新波, 赵樱灿. 二维MoS2纳米材料及其复合物在水处理中的应用[J]. 化学进展, 2020, 32(5): 642-655.