English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

自修复高分子材料

李思超, 韩朋, 许华平*   

  1. 清华大学化学系 有机光电子与分子工程教育部重点实验室 北京 100084
  • 收稿日期:2011-09-01 修回日期:2011-11-01 出版日期:2012-07-24 发布日期:2012-06-30
  • 通讯作者: 许华平 E-mail:xuhuaping@tsinghua.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20904028,21074066)资助

Self-Healing Polymeric Materials

Li Sichao, Han Peng, Xu Huaping   

  1. Key Lab of Organic Optoelectronic and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received:2011-09-01 Revised:2011-11-01 Online:2012-07-24 Published:2012-06-30
高分子材料制造和使用过程中,经常由于内部的微裂纹和局部损伤,而导致性能下降,影响使用寿命。自修复高分子材料模仿生物体损伤愈合的原理,自行发现裂纹并通过一定机理自行愈合,是一种有着广泛应用需求的高分子智能材料,包括含修复剂型和不含修复剂型两类。它的特点在于自动化、精准化。本文旨在结合近年来最新的研究成果,介绍并归纳多种典型的自修复体系,总结各种优化手段,并针对已发展的自修复材料存在的局限性,对其研究前景进行合理的展望。
In the process of manufacture and usage, the mechanical properties of polymeric materials will decrease due to internal micro-cracks or partial injuries, thus shortening the lifetime of the material. By imitating the principles of organism wound healing, the self-healing polymeric materials, which are able to discover and repair cracks automatically, have been developed through different mechanisms. Because of its rapid and precise response to the formation of micro-cracks inside, self-healing polymeric materials have shown great potential as novel smart materials in some severe conditions. The review tries to summarize recent progress in this field, and to introduce a variety of typical self-healing systems along with optimization methods. Rational design on fabrication of self-healing polymeric materials is also outlooked. Contents
1 Introduction
2 Self-healing polymeric materials with repair agents
2.1 Microcapsule-based systems
2.2 Microvascular network systems
3 Self-healing polymeric materials without repair agents
3.1 Reversible covalent reactions
3.2 Supramolecular interactions
4 Conclusion and outlook

中图分类号: 

()
[1] Youngblood J P, Sottos N R. MRS Bull., 2008, 33: 732-741
[2] Dry C. Composite Structures, 1996, 35: 263-269
[3] Wool R P. Soft Matter, 2008, 4: 400-418
[4] Caruso M M, Davis D A, Shen Q, Odom S A, Sottos N R, White S R, Moore J S. Chem. Rev., 2009, 109: 5755-5798
[5] Amamoto Y, Kikuchi M, Masunaga H, Sasaki S, Otsuka H, Takahara A. Macromolecules, 2010, 43: 1785-1791
[6] Bleay S M, Loader C B, Hawyes V J, Humberstone L, Curtis P T. Composites: Part A, 2001, 32: 1767-1776
[7] Jones A S, Rule J D, Moore J S, White S R, Sottos N R. Chem. Mater., 2006, 18: 1312-1317
[8] Trask R S, Bond I P. Smart Mater. Struct., 2006, 15: 704-710
[9] Brown E N, Sottos N R, White S R. Exp. Mech., 2002, 42: 372-379
[10] Deng G H, Tang C M, Li F, Jiang H F, Chen Y M. Macromolecules, 2010, 43: 1191-1194
[11] Brown E N, White S R, Sottos N R. Compos. Sci. Technol., 2005, 65: 2474-2480
[12] Mauldin T C, Rule J D, Sottos N R, White S R, Moore J S. J. R. Soc. Interface, 2007, 4: 389-393
[13] Rule J D, Brown E N, Sottos N R, White S R, Moore J S. Adv. Mater., 2005, 17: 205-208
[14] Brown E N, Kessler M R, Sottos N R, White S R. J. Microencapsulation, 2003, 20: 719-730
[15] Rule J D, Sottos N R, White S R. Polymer, 2007, 48: 3520-3529
[16] Blaiszik B J, Sottos N R, White S R. Compos. Sci. Technol., 2007, 68: 978-986
[17] 章明秋(Zhang M Q), 容敏智(Rong M Z), 许家瑞(Xu J R). 10 000个科学难题 ·化学卷(10 000 Selected Problems in Science, Chemistry), 2009, 399-402
[18] Trask R S, Williams H R, Bond I P. Bioinsp. Biomim., 2007, 2: 1-9
[19] Motuku M, Vaidya U K, Janowski G M. Smart Mater. Struct., 1999, 8: 623-638
[20] Pang J W C, Bond I P. Composites: Part A, 2005, 36: 183-188
[21] Pang J W C, Bond I P. Compos. Sci. Technol., 2005, 65: 1791-1799
[22] Kessler M R, Sottos N R, White S R. Composites: Part A, 2003, 34: 743-753
[23] Keller M W, White S R, Sottos N R. Adv. Funct. Mater., 2007, 17: 2399-2404
[24] Cho S H, White S R, Braun P V. Adv. Mater., 2008, 20: 1-5
[25] Amamota Y, Kikuchi M, Masunaga H, Sasaki S, Otsuka H, Takahara A. Macromolecules, 2009, 42: 8733-8738
[26] Wang H P, Yuan Y C, Rong M Z, Zhang M Q. Macromolecules, 2010, 43: 595-598
[27] Kalista S J, Ward T C. J. R. Soc. Interface, 2007, 4: 405-411
[28] White S R, Sottos N R, Geubelle P H, Moore J S, Kessler M R, Sriram S R, Brown E N, Viswanathan S. Nature, 2001, 409: 794-797
[29] Yuan Y C, Rong M Z, Zhang M Q. Polymer, 2008, 49: 2531-2541
[30] Wilson G O, Caruso M M, Reimer N T, White S R, Sottos N R, Moore J S. Chem. Mater., 2008, 20: 3288-3297
[31] Xiao D S, Yuan Y C, Rong M Z, Zhang M Q. Adv. Funct. Mater., 2009, 19: 2289-2296
[32] Cho S H, Andersson H M, White S R, Sottos N R, Braun P V. Adv. Mater., 2006, 18: 997-1000
[33] Jackson A C, Bartelt J A, Marczewski K, Sottos N R, Braun P V. Macromol. Rapid Commun., 2011, 32: 82-87
[34] Toohey K S, Sottos N R, Lewis J A, Moore J S, White S R. Nature Mater., 2007, 6: 581-585
[35] Toohey K S, Hansen C J, Lewis J A, White S R, Sottos N R. Adv. Funct. Mater., 2009, 19: 1399-1405
[36] Hansen C J, Wu W, Toohey K S, Sottos N R, White S R, Lewis J A. Adv. Mater., 2009, 21: 4143-4147
[37] Chen X X, Dam M A, Ono K, Mal A, Shen H B, Nutt S R, Sheran K, Wudl F. Science, 2002, 295: 1698-1702
[38] Ghosh B, Urban M W. Science, 2009, 323: 1458-1460
[39] Amamoto Y, Kamada J, Otsuka H, Takahara A, Matyjaszewski K. Angew. Chem. Int. Ed., 2011, 50: 1660-1663
[40] Lehn J M. Prog. Polym. Sci., 2005, 30: 814-831
[41] Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L. Nature, 2008, 451: 977-980
[42] Li Y, Li L, Sun J Q. Angew. Chem. Int. Ed., 2010, 49: 6129-6133
[43] Wang Q G, Mynar J L, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T. Nature, 2010, 463: 339-343
[44] Haraguchi K, Uyama K, Tanimoto H. Macromol. Rapid Commun., 2011, 32: 1253-1258
[45] Caruso M M, Blaiszik B J, White S R, Sottos N R, Moore J S. Adv. Funct. Mater., 2008, 18: 1898-1904
[46] 晃小练(Huang X L), 杨祖培(Yang Z P), 杜宗罡(Du Z G), 康超(Kang C), 杨莉莉(Yang L L). 塑料科技(Plastics Science and Technology), 2006, 34: 55-58
[47] Liu Y L, Yu Y, Gao J, Wang Z Q, Zhang X. Angew. Chem. Int. Ed., 2010, 49: 6576-6579
[48] Liu Y L, Liu K, Wang Z Q, Zhang X. Chem. Eur. J., 2011, 17: 9930-9935
[49] Ma N, Li Y, Xu H P, Wang Z Q, Zhang X. J. Am. Chem. Soc., 2010, 132: 442-443
[50] Ma N, Xu H P, An L P, Li J, Sun Z W, Zhang X. Langmuir, 2011, 27: 5874-5878
[51] Ma N, Li Y, Ren H F, Xu H P, Li Z B, Zhang X. Polym. Chem., 2010, 1: 1609-1614
[52] Han P, Ma N, Ren H F, Xu H P, Li Z B, Wang Z Q, Zhang X. Langmuir, 2010, 26: 14414-14418
[53] Canadell J, Goossens H, Klumperman B. Macromolecules, 2011, 44: 2536-2541
[1] 叶娟, 林子谦, 李伟健, 向洪平, 容敏智, 章明秋. 自修复有机硅材料的制备策略[J]. 化学进展, 2023, 35(1): 135-156.
[2] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[3] 王丽媛, 张朦, 王静, 袁玲, 任林, 高庆宇. 自振荡凝胶的仿生运动[J]. 化学进展, 2022, 34(4): 824-836.
[4] 林刚, 张媛媛, 刘健. 仿生光(电)催化NADH再生[J]. 化学进展, 2022, 34(11): 2351-2360.
[5] 李金涛, 张明祖, 何金林, 倪沛红. 低共熔溶剂在高分子合成中的应用[J]. 化学进展, 2022, 34(10): 2159-2172.
[6] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[7] 王桂龙, 崔辛, 陈莹, 胡振峰, 梁秀兵, 陈甫雪. 基于贻贝启发的水下仿生胶黏剂[J]. 化学进展, 2021, 33(12): 2378-2391.
[8] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[9] 张维佳, 邵学广, 蔡文生. 抗冻蛋白抗冻机制的分子模拟研究[J]. 化学进展, 2021, 33(10): 1797-1811.
[10] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[11] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[12] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[13] 陈香李, 刘凯强, 房喻. 分子凝胶:从结构调控到功能应用[J]. 化学进展, 2020, 32(7): 861-872.
[14] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[15] 张瑞璞, 张润泽, 罗三中. 仿生邻醌催化[J]. 化学进展, 2020, 32(11): 1753-1765.
阅读次数
全文


摘要

自修复高分子材料