English
新闻公告
More
化学进展 2012, Vol. 24 Issue (07): 1337-1345 前一篇   后一篇

• 综述与评论 •

双分子层膜人工离子通道的合成

包春燕*, 贾慧娟, 刘涛, 汪奕, 彭伟, 朱麟勇   

  1. 华东理工大学结构可控先进材料及其制备教育部重点实验室 精细化工研究所 上海 200237
  • 收稿日期:2011-10-01 修回日期:2012-01-01 出版日期:2012-07-24 发布日期:2012-06-30
  • 通讯作者: 包春燕 E-mail:baochunyan@ecust.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20903039)、高等学校博士学科点专项科研基金新教师基金项目(No. 20090074120018)、上海市青年科技启明星计划基金项目(No.10QA1401600)和上海市教委晨光计划项目(No. 09CG25)资助

Synthesis of Artificial Ion Channels in Bilayer Membrane

Bao Chunyan, Jia Huijuan, Liu Tao, Wang Yi, Peng Wei, Zhu Linyong   

  1. Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China
  • Received:2011-10-01 Revised:2012-01-01 Online:2012-07-24 Published:2012-06-30
离子通道(ion channels)是由细胞膜上的一类特殊亲水性蛋白质构成的微孔道,它的主要功能就是传输离子跨膜,相当于细胞的通气孔。其结构与功能的异常往往引起上千种疾病,统称为离子通道病,这种疾病目前不能靠常规的仪器来检查,在确诊上有一定的难度。因此通过化学手段合成人工离子通道来模拟生物体内细胞膜上的离子通道的结构与功能,对于深入研究这些疾病并发现特异性治疗药物均具有十分重要的理论和实际意义。本论文就近三十年来人们设计合成的不同种类人工离子通道进行了综述,介绍了其研究进展并总结了各种人工离子通道的分子结构设计以及在膜上传输离子行为,展望了其在模拟天然离子通道功能的同时在生物医药以及生命科学等领域的应用前景。
As known, ion channels are a special class of micropores in the cell membrane consisted by hydrophilic membrane protein, and their function is to facilitate the diffusion of ions across biological membrane which like the blowhole of cell membrane. The abnormalities of their structures and functions often cause thousands of illnesses, which are generally called ion channel disease. For the moment, these diseases cannot be checked by conventional instruments, which make it very difficult for the diagnosis. Therefore, the design and use of artificial ion channels obtained by means of chemical synthesis, to simulate the structures and functions (transport ions selectively and rectification) of ion channels in vivo cell membrane, will have great theoretical and practical significance for in-depth study of these diseases and discovery of specific therapy drugs. Therefore, in this paper, different types of artificial ion channel molecules reported in the last thirty years are reviewed, their research progress are introduced, and the structure designs of these artificial ion channels and their behavior of ion transport in the bilayer membrane are summarized and discussed. In the end, the simulation of the functionalities of natural ion channels and the potential application in biomedical and life science for the artificial ion channels are prospected. Contents
1 Introduction
2 Unimolecular macromolecules type artificial ion channels
2.1 peptides
2.2 Cyclodextrin derivatives
2.3 Crown ether derivatives
2.4 Cucurbituril macrocycles
2.5 Calixarences
3 Barrel-stave type artificial ion channels
4 Barrel-hoop type artificial ion channels
5 Other types of artificial ion channels
6 Conclusion

中图分类号: 

()
[1] Eisenberg B. Acc. Chem. Res., 1998, 31(3): 117-123
[2] 张宗明(Zhang Z M), 裘法祖(Qiu F Z). 世界华人消化杂志(World Chinese Journal of Digestology), 2005, 13(5): 585-587
[3] Chorbachi R, Graham J M, Ford J, Raine C H. Int. J. Pediatr. Otorhinolaryngol, 2002, 66(3): 213-221
[4] Swift P A, MacGregor G A. Am. J. Pharmacogenomics, 2004, 4(3): 161-168
[5] Tabushi I, Kuroda Y, Yokota K. Tetrahedron Letters, 1982, 23(44): 4601-4604
[6] Fernandez-Lopez S, Kim H S, Choi E C, Delgado M, Granja J R, Khasanov A, Kraehenbuehl K, Long G, Weinberger D A, Wilcoxen K M, Ghadiri M R. Nature, 2001, 412(6845): 452-455
[7] Cornell B A, Braach-Maksvytis V L B, King L G, Osman P D J, Raguse B, Wieczorek L, Pace R J. Nature, 1997, 387(6633): 580-583
[8] Das G, Talukdar P, Matile S. Science, 2002, 298(5598): 1600-1602
[9] Boudreault P L, Arseneault M, Otis F, Voyer N. Chem. Commun., 2008, 2118-2120
[10] Leevy W M, Donato G M, Ferdani R, Goldman W E, Schlesinger P H, Gokel G W. J. Am. Chem. Soc., 2002, 124(31): 9022-9023
[11] Leevy W M, Gammon S T, Levchenko T, Daranciang D D, Murillo O, Torchilin V, Piwnica-Worms D, Huettner J E, Gokel G W. Org. Biomol. Chem., 2005, 3(19): 3544-3550
[12] Smith B A, Daschbach M M, Gammon S T, Xiao S Z, Chapman S E, Hudson C, Suckow M, Piwnica-Worms D, Gokel G W, Leevy W M. Chem. Commun., 2011, 7977-7979
[13] Sisson A L, Shah M R, Bhosalea S, Matile S. Chem. Soc. Rev., 2006, 35(12): 1269-1286
[14] Chui J K W, Fyles T M. Chem. Soc. Rev., 2011, 46(23), 4169-4171
[15] Andrea H D, Andrea K, Koert U. ChemBioChem, 2001, 2(3): 221-223
[16] Arndt H D, Vescovi A, Schrey A, Pfeifer J R, Koert U. Tetrahedron, 2002, 58(14): 2789-2801
[17] Koert U, Rei P. Journal of Supramolecular Chemistry, 2002, 2(1/3): 29-37
[18] Koert U. Physical Chemistry Chemical Physics, 2005, 7(7): 1501-1506
[19] Essen L O, Koert U. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 2008, 104: 165-188
[20] Borisenko V, Burns D C, Zhang Z H, Woolley G A. J. Am. Chem. Soc., 2000, 122(27): 6364-6370
[21] Lougheed T, Borisenko V, Hennig T, Rück-Braunb K, Woolley G A. Org. Biomol. Chem., 2004, 2(19): 2798-2801
[22] Koer A, Walko M, Merjbeg W, Feringa B L. Science, 2005, 309(5735): 755-758
[23] Madhavant N, Robert E C, Gin M S. Angew. Chem. Int. Ed., 2005, 44(46): 7584-7587
[24] Jog P V, Gin M S. Org. Lett., 2008, 10(17): 693-3696
[25] Nakano A, Xie Q, Mallen J V, Echegoyen L, Gokel G W. J. Am. Chem. Soc., 1990, 112(3): 1287-1289
[26] Gokel G W, Schlesinger P H, Djedovic N K, Ferdani R, Harder E C, Hu J, Leevy W M, Pajewska J, Pajewski R, Weber M E. Bioorg. Med. Chem., 2004, 12(6): 1291-1304
[27] Weber M E, Schlesinger P H, Gokel G W. J. Am. Chem. Soc., 2005, 127(2): 636-642
[28] Leevy W M, Weber M E, Schlesinger P H, Gokel G W. Chem. Commun., 2005, 89-91
[29] Wang W, Li R, Gokel G W. Chem. Eur. J., 2009, 15(40): 10543-10553
[30] Atkins J L, Patel M B, Cusumano Z, Gokel G W. Chem. Commun., 2010, 8166-8167
[31] Sakai N, Gerard D, Matile S. J. Am. Chem. Soc., 2001, 123(11): 2517-2524
[32] Sakai N, Matile S. J. Am. Chem. Soc., 2002, 124(7): 1184-1185
[33] Hall A C, Suarez C, Hom-Choudhury A, Manu A N A, Hall C D, Kirkovits G J, Ghiriviga I. Org. Biomol. Chem., 2003, 1(16): 2973-2982
[34] Jeon Y J, Ki H, Jon S, Selvapalam N, Oh D Y, Seo I, Park C S, Jung S R, Koh D S, Kim K. J. Am. Chem. Soc., 2004, 126(49): 15944-15945
[35] Maulucci N, Riccardis F D, Botta C B, Casapullo A, Cressina E, Fregonese M, Tecilla P, Izzo I. Chem. Commun., 2005, 1354-1356
[36] Yano M, Tong C C, Light M E, Schmidtchen F P, Gale P A. Org. Biomol. Chem., 2010, 8(19): 4356-4363
[37] Gale P A. Accounts of Chemical Research, 2011, 44(3): 216-226
[38] Fyles T M, Loock D, Zhou X. J. Am. Chem. Soc., 1998, 120(13): 997-3003
[39] Goto C, Yamamura M, Satake A, Kobuke Y. J. Am. Chem. Soc., 2001, 123(11): 2517-2524
[40] 金培元(Jin P Y), 巨勇(Ju Y). 化学进展(Progress in Chemistry), 2007, 19: 1883-1895
[41] Sakai N, Houdebert D, Matile S. Chem. Eur. J., 2003, 9(1): 223-232
[42] Matile S, Jentzsch A V, Montenegr J, Fin A. Chem. Soc. Rev., 2011, 40(5): 2453-2474
[43] Henning A, Ficher L, Guichard G, Matile S. J. Am. Chem. Soc., 2009, 131(46): 16889-16895
[44] Ghadiri M R, Grarji J R, Buehler L K. Nature, 1994, 369: 301-304
[45] Fernandez-Lopez S, Kim H S, Choi E C, Delgado M, Granja J R, Khasanov A, Kraehenbuehl K, Long G, Weinberger D A, Wilcoxen K M, Ghadiri M R. Nature, 2001, 412: 452-455
[46] 唐敏(Tang M), 樊建芬(Fan J F), 刘健(Liu J), 何梁君(He L J), 何珂(He K). 化学进展(Progress in Chemistry), 2010, 22: 648-653
[47] Cazacu A, Tong C, Lee A V D, Fyles T M, Barboiu M. J. Am. Chem. Soc., 2006, 128(29): 9541-9548
[48] Helsel A J, Brown A L, Yamato K, Feng W, Yuan L H, Clements A J, Harding S V, Szabo G, Shao Z F, Gong B. J. Am. Chem. Soc., 2008, 130(47): 15784-15785
[49] Haynes C J E, Gale P A. Chem. Commun., 2011, 8203-8209
[50] Davis J T, Okunola O, Quesada R. Chem. Soc. Rev., 2010, 39(10): 3843-3862
[51] Hou X, Guo W, Jiang L. Chem. Soc. Rev., 2011, 40: 2385-2401
[52] Hou X, Jiang L. ACS Nano, 2009, 3 (11): 3339-3342
[53] Xia F, Guo W, Mao Y D, Hou X, Xue J M, Xia H W, Wang L, Song Y L, Ji H, Qi O Y, Wang Y G, Jiang L. J. Am. Chem. Soc., 2008, 130(26): 8345-8350
[54] Hou X, Guo W, Xia F, Nie F Q, Dong H, Tian Y, Wen L, Wang L, Cao L, Yang Y, Xue J, Song Y, Wang Y, Liu D, Jiang L. J. Am. Chem. Soc., 2009, 131(22): 7800-7805
[55] Hou X, Yang F, Li L, Song Y L, Jiang L, Zhu D B. J. Am. Chem. Soc., 2010, 132: 11736-11742
[56] Hou X, Liu Y J, Dong H, Yang F, Li L, Jiang L. Adv. Mater., 2010, 22: 2440-2243
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 刘秋艳, 王雪锋, 王兆翔, 陈立泉. 高陶瓷含量复合固态电解质[J]. 化学进展, 2021, 33(1): 124-135.
[3] 王娜娜, 王官武. 机械研磨条件下凝聚态有机合成探究[J]. 化学进展, 2020, 32(8): 1076-1085.
[4] 缪谦, 杨代月. 从含有八元环的稠环芳烃到具有负曲率的碳纳米结构:进展与展望[J]. 化学进展, 2020, 32(11): 1835-1845.
[5] 付如刚, 李政, 高磊. 直接以碳化钙为炔源合成有机化合物[J]. 化学进展, 2019, 31(9): 1303-1313.
[6] 邹怀波, 汪华华, 梅光泉, 刘海洋, 张启光. 铁咔咯配合物在有机合成中的催化应用[J]. 化学进展, 2015, 27(6): 666-674.
[7] 徐艺凇, 张凤香, 厉嘉云, 白赢, 肖文军, 彭家建. 聚乙二醇功能化离子液体的制备及其在有机反应中的应用[J]. 化学进展, 2015, 27(10): 1400-1412.
[8] 沈海民, 武宏科, 史鸿鑫, 纪红兵, 余武斌. 非均相环糊精在水相有机合成反应中的应用[J]. 化学进展, 2015, 27(1): 70-78.
[9] 王爱玲, 郑学良, 赵壮志, 李长平, 郑学仿. 深共融溶剂在有机合成中的应用[J]. 化学进展, 2014, 26(05): 784-795.
[10] 徐立宁, 张军涛, 陶成, 曹小平. 烯氯化合物及其合成进展[J]. 化学进展, 2013, 25(11): 1876-1887.
[11] 侯晨, 朱浩, 李亦婧, 李彦锋*. 固定化脯氨酸及其衍生物用于催化不对称有机合成[J]. 化学进展, 2012, (9): 1729-1741.
[12] 王志会*, 王晓. 氮杂吲哚合成[J]. 化学进展, 2012, (10): 1974-1982.
[13] 沈金海, 程国林, 崔秀灵*. 基于钯催化C-H键活化的多米诺反应[J]. 化学进展, 2012, 24(07): 1324-1336.
[14] 刘艳红, 周林成, 惠新平, 赵光辉, 李彦锋. 超顺磁性纳米催化剂在有机合成中的应用[J]. 化学进展, 2012, 24(0203): 327-337.
[15] 刘利 王东. “水上” (“on water”) 有机反应*[J]. 化学进展, 2010, 22(07): 1233-1241.
阅读次数
全文


摘要

双分子层膜人工离子通道的合成