English
新闻公告
More
化学进展 2012, Vol. 24 Issue (07): 1324-1336 前一篇   后一篇

• 综述与评论 •

基于钯催化C-H键活化的多米诺反应

沈金海, 程国林, 崔秀灵*   

  1. 分子药物教育部工程研究中心 厦门市海洋与基因工程药物重点实验室 华侨大学生物医学学院 分子药物研究院 厦门361021
  • 收稿日期:2011-10-01 修回日期:2011-12-01 出版日期:2012-07-24 发布日期:2012-06-30
  • 通讯作者: 崔秀灵 E-mail:cuixl@hqu.edu.cn
  • 基金资助:

    福建省闽江学者支持计划项目(No.10BS216)、厦门市科技计划项目(No.3502z20101014)和华侨大学基本科研业务费专项基金项目(No.JB-GJ1008)资助

Domino Reactions Based on Pd-Catalyzed C-H Bond Activation

Shen Jinhai, Cheng Guolin, Cui Xiuling   

  1. Engineering Research Center of Molecular Medicine, Ministry of Education, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Institutes of Molecular Medicine, Huaqiao University, Xiamen 361021, China
  • Received:2011-10-01 Revised:2011-12-01 Online:2012-07-24 Published:2012-06-30
近年来,多米诺反应作为一种合成复杂分子的高效手段已得到有机合成化学家的广泛关注。该反应过程中,不需改变反应条件和添加试剂,中间体也无需分离和提纯,实现了原子经济和环境友好。通过C-H键活化直接构建碳-碳键和碳-杂原子键,大大拓展了传统偶联反应的底物范围,同样具有高原子经济性,已经广泛地作为多米诺反应中的一个高效步骤。此外,钯催化剂运用广泛,能够与多种官能团兼容,是多米诺反应的理想金属催化剂。本文综述了基于钯催化C-H键活化的多米诺反应的最新研究进展,以反应中钯的价态变化进行分类,介绍有关反应的特点、优势及其在天然产物合成中的应用。
Domino reaction has received great attentions as an efficient protocol to construct structurally complicate molecule in the term of high atom economy and environmental benefits. In this process, it is not required to isolate or purify the intermediates, change the reaction condition and add reagents. On the other hand, C-H bond activation has been an important strategy to directly build carbon-carbon and carbon-heteroatom bonds,which expands the substrate scope in comparison with traditional coupling reactions and has been applied as an efficient step in domino reaction. Palladium reagent can tolerate various functional groups and has been widely used in the organic reaction. It is also an ideal catalyst for domino reaction. In this paper, we review the progress of domino reactions based on Pd-catalyzed C-H bond activation, including a comprehensive summary of recent advances and detailed analysis on the versatility and application in the synthesis of natural products. Contents
1 Introduction
2 Pd(0)/Pd(Ⅱ) catalytic cycle
2.1 Mizoroki-Heck reaction/C—H bond activation domino reaction
2.2 Carbopalladation of alkynes/C—H bond activ-ation domino reaction
3 Pd(0)/Pd(Ⅱ)/Pd(Ⅳ) catalytic cycle
3.1 Catellani reaction
3.2 Non-Catellani reaction
4 Pd(Ⅱ)/Pd(Ⅳ)/Pd(0) catalytic cycle
5 Pd(Ⅱ)/Pd(Ⅳ) catalytic cycle
6 Pd(Ⅱ) /Pd(0) catalytic cycle
7 Application in synthysis of natural products
8 Conclusion and outlook

中图分类号: 

()
[1] Wender P A, Miller B L. Nature, 2009, 460 (7252): 197-201
[2] Tietze L F. Chem. Rev., 1996, 96 (1): 115-136
[3] Tietze L F, Brasche G, Gericke K M. Domino Reactions in Organic Synthesis. Weinheim: Wiley-VCH, 2006
[4] Heck R F. Comprehensive Organic Synthesis, Vol. 4(Eds. Trost B M, Fleming I). Oxford: Pergamon, 1991.833
[5] Trost B M, Crawley M L. Chem. Rev., 2003, 103: 2921-2944
[6] Tamao K, Kiso Y, Sumitani K, Kumada M. J. Am. Chem. Soc., 1972, 94 (26): 9268-9269
[7] Stille J K. Angew. Chem. Int. Ed., 1986, 25: 508-524
[8] Negishi E I, Hu Q, Huang Z, Qian M, Wang G. Aldrichimica Acta, 2005, 38: 71-88
[9] Miyaura N, Suzuki A. Chem. Rev., 1995, 95: 2457-2483
[10] Tamejiro H. J. Organomet. Chem., 2002, 653 (1/2): 58-61
[11] Chen X, Engle K M, Wang D H, Yu J Q. Angew. Chem. Int. Ed., 2009, 48 (28): 5094-5115
[12] 李湖(Li H), 施章杰(Shi Z J). 化学进展(Prog. Chem.), 2010, 22 (7): 1414-1433
[13] Lyons T W, Sanford M S. Chem. Rev., 2010, 110: 1147-1169
[14] Le Bras J, Muzart J. Chem. Rev., 2011, 111 (3): 1170-1214
[15] Negishi E, de Meijere A. Handbook of Organopalladium Chemistry for Organic Synthesis. John Wiley & Sons Inc., 2002
[16] 韩秀玲(Han X L), 刘桂霞(Liu G X), 陆熙炎(Lu X Y). 有机化学(Org. Chem.), 2005, 25 (10): 1182-1197
[17] Shindoh N, Takemoto Y, Takasu K. Chem. Eur. J., 2009, 15 (45): 12168-12179
[18] Oestreich M. The Mizoroki-Heck Reaction. John Wiley & Sons Inc., 2009. 1-42
[19] Furuta T, Asakawa T, Iinuma M, Fujii S, Tanaka K, Kan T. Chem. Commun., 2006, 3648-3650
[20] Ruck R T, Huffman M A, Kim M M, Shevlin M, Kandur W V, Davies I W. Angew. Chem. Int. Ed., 2008, 47 (25): 4711-4714
[21] Satyanarayana G, Maichle-Moessmer C, Maier M E. Chem. Commun., 2009, 1571-1573
[22] Hu Y, Yu C, Ren D, Hu Q, Zhang L, Cheng D. Angew. Chem. Int. Ed., 2009, 48 (30): 5448-5451
[23] Hu Y, Ouyang Y, Qu Y, Hu Q, Yao H. Chem. Commun., 2009, 4575-4577
[24] Hu Y, Ren D, Zhang L, Lin X, Wan J. Eur. J. Org. Chem., 2010, 4454-4459
[25] René O, Lapointe D, Fagnou K. Org. Lett., 2009, 11 (20): 4560-4563
[26] Zeni G, Larock R C. Chem. Rev., 2004, 104 (5): 2285-2310
[27] Lu Z, Hu C, Guo J, Li J, Cui Y, Jia Y. Org. Lett., 2009, 12 (3): 480-483
[28] Kim J N, Kim H S, Gowrisankar S, Kim S H. Tetrahedron Lett., 2008, 49 (24): 3858-3861
[29] Cacchi S, Fabrizi G. Carbopalladation of Alkynes Followed by Trapping with Nucleophilic Reagents. John Wiley & Sons Inc., 2002. 133
[30] Zhao J, Larock C. Org. Lett., 2005, 7 (4): 701-704
[31] Pinto A, Neuville L, Retailleau P, Zhu J P. Org. Lett., 2006, 8 (21): 4927-4930
[32] Zhu J P, Pinto A, Neuville L. Angew. Chem. Int. Ed., 2007, 46 (18): 3291-3295
[33] Tietze L F, Lotz F. Eur. J. Org. Chem., 2006, 4676-4684
[34] Herrmann W A, Brossmer C, Fele K, Reisinger C P, Priermeier T, Beller M, Fischer H. Angew. Chem. Int. Ed., 1995, 34 (17): 1844-1848
[35] Duan Z, Huang H N, Li J, Zhao W N, Mei Y B. Org. Biomol. Chem., 2011, 9 (14): 5036-5038
[36] Catellani M, Motti E, Della Ca N. Acc. Chem. Res., 2008, 41 (11): 1512-1522
[37] Maestri G, Larraufie M H, Derat E, Ollivier C, Fensterbank L, Lacote E, Malacria M. Org. Lett., 2010, 12 (24): 5692-5695
[38] Martins A, Mariampillai B, Lautens M. Top. Curr. Chem., 2010, 292: 1-33
[39] Catellani M, Della Ca N, Maestri G. Chem. -Eur. J., 2009, 15 (32): 7850-7853
[40] Catellani M, Maestri G, Della Ca N. Chem. Commun., 2009, 4892-4894
[41] Lautens M, Zhao Y B, Mariampillai B, Candito D A, Laleu B, Li M Z. Angew. Chem. Int. Ed., 2009, 48 (10): 1849-1852
[42] Sole D, Serrano O. J. Org. Chem., 2008, 73 (23): 9372-9378
[43] Catellani M, Motti E, Della Ca N, Deledda S, Fava E, Panciroli F. Chem. Commun., 2010, 4291-4293
[44] Thansandote P, Chong E, Feldmann K O, Lautens M. J. Org. Chem., 2010, 75 (10): 3495-3498
[45] Cárdenas D J, Martín-Matute B, Echavarren A M. J. Am. Chem. Soc., 2006, 128 (15): 5033-5040
[46] García-Cuadrado D, Braga A A C, Maseras F, Echavarren A M. J. Am. Chem. Soc., 2006, 128 (4): 1066-1067
[47] Maestri G, Motti E, Della Ca N, Malacria M, Derat E, Catellani M. J. Am. Chem. Soc., 2011, 133 (22): 8574-8585
[48] Dyker G. Angew. Chem. Int. Ed., 1992, 31 (8): 1023-1025
[49] Dyker G. Angew. Chem. Int. Ed., 1994, 33 (1): 103-105
[50] Dyker G. J. Org. Chem., 1993, 58 (23): 6426-6428
[51] Dyker G, Nerenz F, Siemsen P, Bubenitschek P, Jones P G. Chem. Ber., 1996, 129: 1265-1269
[52] Mauleon P, Alonso I, Carretero J C. Angew. Chem. Int. Ed., 2001, 40 (7): 1291-1293
[53] Thirunavukkarasu V S, Parthasarathy K, Cheng C H. Angew. Chem. Int. Ed., 2008, 47 (49): 9462-9465
[54] Thirunavukkarasu V S, Parthasarathy K, Cheng C H. Chem. Eur. J., 2010, 16 (5): 1436-1440
[55] Gandeepan P, Parthasarathy K, Cheng C H. J. Am. Chem. Soc., 2010, 132 (25): 8569-8571
[56] Wu Y T, Huang K H, Shin C C, Wu T C. Chem. Eur. J., 2008, 14 (22): 6697-6703
[57] Wang N X, Tang S, Peng P, Pi S F, Liang Y, Li J H. Org. Lett., 2008, 10 (6): 1179-1182
[58] Jiao L, Bach T. J. Am. Chem. Soc., 2011, 133 (33): 12990-12993
[59] Cant A A, Roberts L, Greaney M F. Chem. Commun., 2010, 8671-8673
[60] Wu J L, Cui X L, Mi X, Li Y, Wu Y J. Chem. Commun., 2010, 6771-6773
[61] Wang J, Wang L, Peng S Y. Chem. Commun., 2011, 5422-5424
[62] Zhang J L, Liu R R. Adv. Synth. Catal., 2011, 353 (1): 36-40
[63] Lautens M, Blanchot M, Candito D A, Larnaud F. Org. Lett., 2011, 13 (6): 1486-1489
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 王娜娜, 王官武. 机械研磨条件下凝聚态有机合成探究[J]. 化学进展, 2020, 32(8): 1076-1085.
[3] 缪谦, 杨代月. 从含有八元环的稠环芳烃到具有负曲率的碳纳米结构:进展与展望[J]. 化学进展, 2020, 32(11): 1835-1845.
[4] 付如刚, 李政, 高磊. 直接以碳化钙为炔源合成有机化合物[J]. 化学进展, 2019, 31(9): 1303-1313.
[5] 邹怀波, 汪华华, 梅光泉, 刘海洋, 张启光. 铁咔咯配合物在有机合成中的催化应用[J]. 化学进展, 2015, 27(6): 666-674.
[6] 徐艺凇, 张凤香, 厉嘉云, 白赢, 肖文军, 彭家建. 聚乙二醇功能化离子液体的制备及其在有机反应中的应用[J]. 化学进展, 2015, 27(10): 1400-1412.
[7] 沈海民, 武宏科, 史鸿鑫, 纪红兵, 余武斌. 非均相环糊精在水相有机合成反应中的应用[J]. 化学进展, 2015, 27(1): 70-78.
[8] 王爱玲, 郑学良, 赵壮志, 李长平, 郑学仿. 深共融溶剂在有机合成中的应用[J]. 化学进展, 2014, 26(05): 784-795.
[9] 徐立宁, 张军涛, 陶成, 曹小平. 烯氯化合物及其合成进展[J]. 化学进展, 2013, 25(11): 1876-1887.
[10] 侯晨, 朱浩, 李亦婧, 李彦锋*. 固定化脯氨酸及其衍生物用于催化不对称有机合成[J]. 化学进展, 2012, (9): 1729-1741.
[11] 王志会*, 王晓. 氮杂吲哚合成[J]. 化学进展, 2012, (10): 1974-1982.
[12] 包春燕*, 贾慧娟, 刘涛, 汪奕, 彭伟, 朱麟勇. 双分子层膜人工离子通道的合成[J]. 化学进展, 2012, 24(07): 1337-1345.
[13] 刘艳红, 周林成, 惠新平, 赵光辉, 李彦锋. 超顺磁性纳米催化剂在有机合成中的应用[J]. 化学进展, 2012, 24(0203): 327-337.
[14] 王丽丽 赵伟宁 段征. K4[Fe(CN)6]作为氰源在氰基化反应中的应用**[J]. 化学进展, 2010, 22(10): 1964-1972.
[15] 刘利 王东. “水上” (“on water”) 有机反应*[J]. 化学进展, 2010, 22(07): 1233-1241.