English
新闻公告
More
化学进展 2012, Vol. 24 Issue (07): 1294-1308 前一篇   后一篇

• 综述与评论 •

多肽在贵金属纳米粒子制备中的应用

陶凯, 王继乾*, 夏道宏, 徐海, 吕建仁, 山红红   

  1. 中国石油大学(华东)重质油国家重点实验室 生物工程与技术中心 青岛 266580
  • 收稿日期:2011-09-01 修回日期:2011-11-01 出版日期:2012-07-24 发布日期:2012-06-30
  • 通讯作者: 王继乾 E-mail:jqwang@upc.edu.cn;xuh@upc.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21076231)、山东省自然科学基金项目(No.ZR2010BQ028)和中国石油大学(华东)优秀博士学位论文培育计划项目资助

Applications of Peptides in Noble Metal Nanoparticles (NMNPs) Preparation

Tao Kai, Wang Jiqian, Xia Daohong, Xu Hai, Lv Jianren, Shan Honghong   

  1. State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
  • Received:2011-09-01 Revised:2011-11-01 Online:2012-07-24 Published:2012-06-30
由于具有与大块固体相迥异的性能,贵金属纳米粒子的制备与应用已经成为当前纳米、材料技术领域研究的热点。由于组成成分较多、包含各种活性基团、序列可调,并且很多多肽可生物降解、生物兼容、具有生物活性和特异性识别性能,多肽在贵金属纳米粒子制备中的应用也越来越受到人们的重视。本文从多肽作为还原剂还原贵金属盐; 多肽作为保护剂/调控剂制备不同尺寸/形貌的贵金属纳米粒子; 多肽作为引导剂规则排列贵金属纳米粒子; 多肽作为贵金属纳米粒子组装的模板以及多肽在贵金属表面的吸附、多肽的自组装和如何获取所需要的多肽序列等几个方面综述了近年来多肽在贵金属纳米粒子制备中的应用。最后简述了利用多肽制备的贵金属纳米粒子在纳米、材料技术领域中的应用,并提出了当前该领域中存在的一些不足及研究展望。
The preparations and applications of noble metal nanoparticles (NMNPs) have attracted much more interest because of remarkably distinct properties compared with bulky metallic solids. Because peptides have many compositions and active groups, and be degradable, biologically active, biocompatible, specific recognizable, could be used in biological and medical fields, scientists have been trying to prepare NMNPs with peptides in the hope of obtaining more functional and adjustable materials. The recent progress in the applications of peptides in NMNPs preparations is summarized from the following aspects in this review: peptides acting as reducing agents to reduce noble metal salt precursors; peptides acting as capping/modulating agents to prepare NMNPs with different sizes/morphologies; peptides acting as directors to array NMNPs to regular superstructures; peptides acting as templates to assemble NMNPs to low-dimensional assemblies. In addition, the adsorption of peptides on surfaces of noble metals, the peptides self-assembly and how to obtain desired peptides are also summarized. The applications of NMNPs prepared with peptides in nanometer/material technologies are also introduced briefly, such as acting as catalyst for Stille coupling reaction, magnetic & electrical materials through self-assembled nanowires, and optical materials with specific recognition, label, and detection. Finally, several directions to be studied in future are also prospected, such as the interaction between peptide and NMNPs, the control of size, morphology and composition of NMNPs during synthesis with peptide, the ordered self-assembly of NMNPs regulated with peptides, and the applications in more fields. Contents
1 Introduction
2 Applications of peptides in NMNPs preparation
2.1 Acting as reducing agents
2.2 Acting as capping/modulating agents
2.3 Acting as directors
2.4 Acting as templates
3 How to obtain desired peptides for preparing NMNPs
3.1 Extracting peptides from natural organisms
3.2 Screening peptides with combinatorial display technology
3.3 Designing peptides with bioinformatics technology
3.4 De novo designing desired peptides
4 Applications of NMNPs prepared with peptides
4.1 Catalytical applications
4.2 Magnetic applications
4.3 Electrical applications
4.4 Optical applications
4.5 Specific recognizable applications
5 Insufficiencies and prospects

中图分类号: 

()
[1] 上海专家组(Experts Group of Shanghai). 纳米世界的奥妙(The Arcanum of Nanometer Worlds). 上海: 上海科学技术文献出版社(Shanghai: Shanghai Science and Technology Literature Publishing Press), 2010. 2-6
[2] Ahmadi T S, Wang Z L, Green T C, Henglein A, EI-Sayed M A. Science, 1996, 272: 1924-1926
[3] Tao A R, Habas S, Yang P. Small, 2008, 4(3): 310-325
[4] Xia Y, Xiong Y, Lim B, Skrabalak S E. Angew. Chem. Int. Ed., 2009, 48(1): 60-103
[5] Sau T K, Rogach A L. Adv. Mater., 2009, 22(16): 1781-1804
[6] Sau T K, Rogach A L, Jckel F, Klar T A, Feldmann J. Adv. Mater., 2010, 22(16): 1805-1825
[7] Mostafa S, Behafarid F, Croy J R, Ono L K, Li L, Yang J C, Frenkel A I, Cuenya B R. J. Am. Chem. Soc., 2010, 132(44): 15714-15719
[8] Li Y, Whyburn G P, Huang Y. J. Am. Chem. Soc., 2009, 131(44): 15998-15999
[9] Chen S, Kimura K. J. Phys. Chem. B, 2001, 105(23): 5397-5403
[10] Lévy R, Thanh N T K, Doty R C, Hussain I, Nichols R J, Schiffrin D J, Brust M, Fernig D G. J. Am. Chem. Soc., 2004, 126(32): 10076-10084
[11] Demortière A, Launois P, Goubet N, Albouy P A, Petit C. J. Phys. Chem. B, 2008, 112(46): 14583-14592
[12] Li Y, Huang Y. Adv. Mater., 2010, 22(17): 1921-1925
[13] Hu J, Zhang Y, Liu B, Liu J, Zhou H, Xu Y, Jiang Y, Yang Z, Tian Z Q. J. Am. Chem. Soc., 2004, 126(31): 9470-9471
[14] Song H, Kim F, Connor S, Somorjai G A, Yang P. J. Phys. Chem. B, 2005, 109(1): 188-193
[15] Habas S E, Lee H, Radmilovic V, Somorjai G A, Yang P. Nat. Mater., 2007, 6(9): 692-697
[16] Petroski J M, Green T C, El-Sayed M A. J. Phys. Chem. A, 2001, 105(23): 5542-5547
[17] Song Y, Dorin R M, Garcia R M, Jiang Y B, Wang H, Li P, Qiu Y, Swol F V, Miller J E, Shelnutt J A. J. Am. Chem. Soc., 2008, 130(38): 12602-12603
[18] Song Y, Jiang Y B, Wang H, Pena D A, Qiu Y, Miller J E, Shelnutt J A. Nanotechnology, 2006, 17: 1300-1308
[19] Wang L, Yamauchi Y. J. Am. Chem. Soc., 2009, 131(26): 9152-9153
[20] Lu X, Tuan H Y, Chen J, Li Z Y, Korgel B A, Xia Y. J. Am. Chem. Soc., 2007, 129(6): 1733-1742
[21] Garg N, Scholl C, Mohanty A, Jin R. Langmuir, 2010, 26(12): 10271-10276
[22] Song Y, Yang Y, Medforth C J, Pereira E, Singh A K, Xu H, Jiang Y, Brinker C J, Swol F V, Shelnutt J A. J. Am. Chem. Soc., 2004, 126(2): 635-645
[23] Huang X, Zhao Z, Fan J, Tan Y, Zheng N. J. Am. Chem. Soc., 2011, 133(13): 4718-4721
[24] Lu X, Yavuz M S, Tuan H Y, Korgel B A, Xia Y. J. Am. Chem. Soc., 2008, 130(28): 8900-8901
[25] Chiu C Y, Li Y, Ruan L, Ye X, Murray C B, Huang Y. Nat. Chem., 2011, 3: 393-399
[26] Ruan L, Chiu C Y, Li Y, Huang Y. Nano Lett., 2011, 11(7): 3040-3046
[27] Shevchenko E V, Talapin D V, Kotov N A, O'Brien S, Murray C B. Nature, 2006, 439(7072): 55-59
[28] Kiely C J, Fink J, Brust M, Bethell D, Schiffrin D J. Nature, 1998, 396(6710): 444-446
[29] Reches M, Gazit E. Science, 2003, 300(5619): 625-627
[30] Chen C L, Rosi N L. Angew. Chem. Int. Ed., 2010, 49(11): 1924-1942
[31] Song Y, Garcia R M, Dorin R M, Wang H, Qiu Y, Coker E N, Steen W A, Miller J E, Shelnutt J A. Nano Lett., 2007, 7(12): 3650-3655
[32] Gazit E. FEBS J., 2007, 274(2): 317-322
[33] 王镜岩(Wang J Y), 朱圣庚(Zhu S G), 徐长法(Xu C F). 生物化学(Biological Chemistry). 第三版(3rd ed.). 北京: 高等教育出版社(Beijing: Higher Education Press), 2002. 123-192
[34] 张玉亭(Zhang Y T), 吕彤(Lv T). 胶体与界面化学(Colloidal and Interfacial Chemistry). 北京: 中国纺织出版社(Beijing: China Textile&Apparel Press), 2008. 19-26
[35] Tan Y N, Lee J Y, Wang D I C. J. Am. Chem. Soc., 2010, 132(16): 5677-5686
[36] Peelle B R, Krauland E M, Wittrup K D, Belcher A M. Langmuir, 2005, 21(15): 6929-6933
[37] Willett R L, Baldwin K W, Pfeiffer L N. Proc. Natl. Acad. Sci. USA, 2005, 102(22): 7817-7822
[38] Oren E E, Tamerler C, Sarikaya M. Nano Lett., 2005, 5(3): 415-419
[39] Heinz H, Farmer B L, Pandey R B, Slocik J M, Patnaik S S, Pachter R, Naik R R. J. Am. Chem. Soc., 2009, 131(28): 9704-9714
[40] Seker U O S, Wilson B, Dincer S, Kim W, Oren E E, Evans J S, Tamerler C, Sarikaya M. Langmuir, 2007, 23(15): 7895-7900
[41] So C R, Tamerler C, Sarikaya M. Angew. Chem. Int. Ed., 2009, 121(28): 5276-5279
[42] Tamerler C, Duman M, Oren E E, Gungormus M, Xiong X, Kacar T, Parviz B A, Sarikaya M. Small, 2006, 2(11): 1372-1378
[43] Sarikaya M, Tamerler C, Alex K Y J, Schulten K, Baneyx A F. Nat. Mater., 2003, 2(9): 577-585
[44] Kantarci N, Tamerler C, Sarikaya M, Haliloglu T, Doruker P. Polymer, 2005, 46(12): 4307-4313
[45] So C R, Kulp J L, Oren E E, Zareie H, Tamerler C, Evans J S, Sarikaya M. ACS Nano, 2009, 3(6): 1525-1531
[46] Seker U O S, Wilson B, Sahin D, Tamerler C, Sarikaya M. Biomacromolecules, 2008, 10(2): 250-257
[47] 杨宏孝(Yang H X), 凌芝(Ling Z), 颜秀茹(Yan X R). 无机化学(Inorganic Chemistry). 第三版(3rd ed.). 北京: 高等教育出版社(Beijing: Higher Education Press), 2003. 153-179
[48] Doty R C, Tshikhudo T R, Brust M, Fernig D G. Chem. Mater., 2005, 17(18): 4630-4635
[49] Mandal S, Phadtare S, Sastry M. Curr. Appl. Phys., 2005, 5(2): 118-127
[50] Selvakannan P, Swami A, Srisathiyanarayanan D, Shirude P S, Pasricha R, Mandale A B, Sastry M. Langmuir, 2004, 20(18): 7825-7836
[51] Selvakannan P, Mandal S, Phadtare S, Anand G, Pasricha R, Adyanthaya S D, Sastry M. J. Colloid Interf. Sci., 2004, 269: 97-102
[52] Mandal S, Selvakannan P, Phadtare S, Pasricha R, Sastry M. J. Chem. Sci., 2002, 114(5): 513-520
[53] Selvakannan P, Mandal S, Phadtare S, Pasricha R, Sastry M. Langmuir, 2003, 19(8): 3545-3549
[54] Slocik J M, Stone M O, Naik R R. Small, 2005, 1(11): 1048-1052
[55] Slocik J M, Naik R R. Adv. Mater., 2006, 18(15): 1988-1992
[56] Coppage R, Slocik J M, Sethi M, Pacardo D B, Naik R R, Knecht M R. Angew. Chem. Int. Ed., 2010, 122(22): 3855-3858
[57] Slocik J M, Naik R R. US7905943B1, 2008
[58] Forbes L M, Goodwin A P, Cha J N. Chem. Mater., 2010, 22(24): 6524-6528
[59] Mertig M, Ciacchi L C, Seidel R, Pompe W. Nano Lett., 2002, 2(8): 841-844
[60] Gao X, Matsui H. Adv. Mater., 2005, 17(17): 2037-2052
[61] Si S, Raula M, Paira T K, Mandal T K. ChemPhysChem, 2008, 9(11): 1578-1584
[62] Aili D, Enander K, Rydberg J, Nesterenko I, Bjrefors F, Baltzer L, Liedberg B. J. Am. Chem. Soc., 2008, 130(17): 5780-5788
[63] Aili D, Enander K, Baltzer L, Liedberg B. Nano Lett., 2008, 8(8): 2473-2478
[64] Sethi M, Knecht M R. ACS Appl. Mater. Inter., 2009, 1(6): 1270-1278
[65] Sethi M, Knecht M R. Langmuir, 2010, 26(12): 9860-9874
[66] Dujardin E, Peet C, Stubbs G, Culver J N, Mann S. Nano Lett., 2003, 3(3): 413-417
[67] Huang Y, Chiang C Y, Lee S K, Gao Y, Hu E L, Yoreo J D, Belcher A M. Nano Lett., 2005, 5(7): 1429-1434
[68] Lee S Y, Choi J, Royston E, Janes D B, Culver J N, Harris M T. J. Nanosci. Nanotechnol., 2006, 6(4): 974-981
[69] Zhang S. Nat. Biotechnol., 2003, 21(10): 1171-1178
[70] Zhao X, Pan F, Xu H, Yaseen M, Shan H, Hauser C A E, Zhang S, Lu J R. Chem. Sco. Rev., 2010, 39(9): 3480-3498
[71] Wang J, Han S, Meng G, Xu H, Xia D, Zhao X, Schweins R, Fragneto G, Lu J R. Soft Matter, 2009, 5: 3870-3878
[72] Hong Y, Legge R L, Zhang S, Chen P. Biomacromolecules, 2003, 4(5): 1433-1442
[73] Xu H, Wang J, Han S, Wang J, Yu D, Zhang H, Xia D, Zhao X, Waigh T A, Lu J R. Langmuir, 2009, 25(7): 4115-4123
[74] Xu H, Wang Y, Ge X, Han S, Wang S, Zhou P, Shan H, Zhao X, Lu J R. Chem. Mater., 2010, 22(18): 5165-5173
[75] Pashuck E T, Cui H, Stupp S I. J. Am. Chem. Soc., 2010, 132(17): 6041-6046
[76] Cui H, Muraoka T, Cheetham A G, Stupp S I. Nano Lett., 2009, 9(3): 945-951
[77] Deng M, Yu D, Hou Y, Wang Y J. J. Phys. Chem. B, 2009, 113(25): 8539-8544
[78] Ziserman L, Lee H Y, Raghavan S R, Mor A, Danino D. J. Am. Chem. Soc., 2011, 133(8): 2511-2517
[79] Matsui H, Gologan B. J. Phys. Chem. B, 2000, 104(15): 3383-3386
[80] Hartgerink J D, Granja J R, Milligan R A, Ghadiri M R. J. Am. Chem. Soc., 1996, 118(1): 43-50
[81] Lamm M S, Rajagopal K, Schneider J P, Pochan D J. J. Am. Chem. Soc., 2005, 127(47): 16692-16700
[82] Mart R J, Osborne R D, Stevens M M, Ulijn R V. Soft Matter, 2006, 2(10): 822-835
[83] Hamley I W. Angew. Chem. Int. Ed., 2007, 46(43): 8128-8147
[84] Paramonov S E, Jun H W, Hartgerink J D. J. Am. Chem. Soc., 2006, 128(22): 7291-7298
[85] Niece K L, Hartgerink J D, Donners J J J M, Stupp S I. J. Am. Chem. Soc., 2003, 125(24): 7146-7147
[86] Fu X, Wang Y, Huang L, Sha Y, Gui L, Lai L, Tang Y. Adv. Mater., 2003, 15(11): 902-906
[87] Sawaya M R, Sambashivan S, Nelson R, Ivanova M I, Sievers S A, Apostol M I, Thompson M J, Balbirnie M, Wiltzius J J W, McFarlane H T, Madsen A , Riekel C, Eisenberg D. Nature, 2007, 447(7143): 453-457
[88] Mehta A K, Lu K, Childers W S, Liang Y, Dublin S N, Dong J, Snyder J P, Pingali S V, Thiyagarajan P, Lynn D G. J. Am. Chem. Soc., 2008, 130(30): 9829-9835
[89] Tao K, Wang J, Zhou P, Wang C, Xu H, Zhao X, Lu J R. Langmuir, 2011, 27(6): 2723-2730
[90] Adler-Abramovich L, Reches M, Sedman V L, Allen S, Tendler S J B, Gazit E. Langmuir, 2006, 22(3): 1313-1320
[91] Rica R D, Matsui H. Chem. Sco. Rev., 2010, 39(9): 3499-3509
[92] Kasotakis E, Mossou E, Adler-Abramovich L, Mitchell E P, Forsyth V T, Gazit E, Mitraki A. J. Pept. Sci., 2009, 92(3): 164-172
[93] Djalali R, Chen Y F, Matsui H. J. Am. Chem. Soc., 2003, 125(19): 5873-5879
[94] Banerjee I A, Yu L, Matsui H. Proc. Natl. Acad. Sci. USA, 2003, 100(25): 14678-14682
[95] Yu L, Banerjee I A, Matsui H. J. Am. Chem. Soc., 2003, 125(48): 14837-14840
[96] Yu L, Banerjee I A, Matsui H. J. Mater. Chem., 2004, 14(4): 739-743
[97] Yu L, Banerjee I A, Shima M, Rajan K, Matsui H. Adv. Mater., 2004, 16(8): 709-712
[98] Chen C L, Zhang P, Rosi N L. J. Am. Chem. Soc., 2008, 130(41): 13555-13557
[99] Song Y, Challa S R, Medforth C J, Qiu Y, Watt R K, Pea D, Miller J E, Swolab F V, Shelnutt J A. Chem. Commum., 2004, 1044-1045
[100] Lamm M S, Sharma N, Rajagopal K, Beyer F L, Schneider J P, Pochan D J. Adv. Mater., 2008, 20(3): 447-451
[101] Sharma N, Top A, Kiick K L, Pochan D J. Angew. Chem. Int. Ed., 2009, 48(38): 7078-7082
[102] Bose P P, Drew M G B, Banerjee A. Org. Lett., 2007, 9(13): 2489-2492
[103] Li L S, Stupp S I. Angew. Chem. Int. Ed., 2005, 44: 1833-1836
[104] Dickerson M B, Sandhage K H, Naik R R. Chem. Rev., 2008, 108(11): 4935-4978
[105] Xie J, Lee J Y, Wang D I C, Ting Y P. ACS Nano, 2007, 1(5): 429-439
[106] Slocik J M, Naik R R. Chem. Soc. Rev., 2010, 39(9): 3454-3463
[107] Kriplani U, Kay B K. Curr. Opin. Biotechnol., 2005, 16(4): 470-475
[108] Baneyx F O, Schwartz D T. Curr. Opin. Biotechnol., 2007, 18(4): 312-317
[109] Naik R R, Jones S E, Murray C J, McAuliffe J C, Vaia R A, Stone M O. Adv. Funct. Mater., 2004, 14(1): 25-30
[110] Bassindale A R, Codina-Barrios A, Frascione N, Taylor P G. Chem. Commum., 2007, 2956-2958
[111] Oren E E, Tamerler C, Sahin D, Hnilova M, Seker U O S, Sarikaya M. Bioinformatics, 2007, 23(21): 2816-2822
[112] Scheibel T, Parthasarathy R, Sawicki G, Lin X M, Jaeger H, Lindquist S L. Proc. Natl. Acad. Sci. USA., 2003, 100(8): 4527-4532
[113] Wang Z X, Lévy R, Fernig D G, Brust M. Bioconjugate Chem., 2005, 16(3): 497-500
[114] Sun L L, Liu D J, Wang Z X. Langmuir, 2008, 24(18): 10293-10297
[115] Lévy R, Doty R C. Biofunctionalization of Nanomaterials. WILEY-VCH Verlag GmbH & Co. KGaA, 2007. 235-269
[1] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[2] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[3] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[4] 林建云, 罗时荷, 杨崇岭, 肖颖, 杨丽庭, 汪朝阳. 生物基高分子型止血材料和伤口敷料[J]. 化学进展, 2021, 33(4): 581-595.
[5] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.
[6] 张晗, 丁家旺, 秦伟. 基于多肽识别的电化学生物传感技术[J]. 化学进展, 2021, 33(10): 1756-1765.
[7] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[8] 刘宁, 刘水林, 伍素云, 付琳, 吴智, 李来丙. 金属基介孔固体碱催化剂的制备与应用[J]. 化学进展, 2020, 32(5): 536-547.
[9] 杨悦, 王珏玉, 赵敏, 崔岱宗. 病毒模板合成的金属纳米材料及应用[J]. 化学进展, 2019, 31(7): 1007-1019.
[10] 白凌闯, 赵静, 冯亚凯. 多功能基因递送系统促进内皮细胞增殖[J]. 化学进展, 2019, 31(2/3): 300-310.
[11] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[12] 刘畅, 吴峰, 苏倩倩, 钱卫平. 贵金属多孔纳米结构的模板法制备及生物检测应用[J]. 化学进展, 2019, 31(10): 1396-1405.
[13] 徐柳, 钱晨, 朱辰奇, 陈志鹏, 陈瑞*. 基于多肽的纳米药物递送系统的研究[J]. 化学进展, 2018, 30(9): 1341-1348.
[14] 李勃天, 温幸, 唐黎明. 一维聚合物-无机纳米复合材料的制备[J]. 化学进展, 2018, 30(4): 338-348.
[15] 李里, 董健, 钱卫平*. 纳米碗阵列的制备与应用研究[J]. 化学进展, 2018, 30(2/3): 156-165.