English
新闻公告
More
化学进展 2012, Vol. 24 Issue (07): 1277-1293 前一篇   后一篇

• 综述与评论 •

碲化镉纳米晶的制备及应用

赵冬梅1, 孙立国2, 王彦杰2, 杜宇虹1, 汪成*2   

  1. 1. 黑龙江东方学院食品与环境工程学部 哈尔滨 150086;
    2. 黑龙江大学化学化工与材料学院 哈尔滨 150080
  • 收稿日期:2011-10-01 修回日期:2011-11-01 出版日期:2012-07-24 发布日期:2012-06-30
  • 通讯作者: 汪成 E-mail:wangc_93@yahoo.com
  • 基金资助:

    黑龙江省普通高等学校青年学术骨干支持计划项目(No. 1252G049)、国家自然科学基金项目(No. 20872030, 51143002,21072049, 21074031)和黑龙江大学创新团队项目(No. Hdtd2010-11)资助

Preparation and Application of CdTe Nanocrystals

Zhao Dongmei1, Sun Liguo2, Wang Yanjie2, Du Yuhong1, Wang Cheng2   

  1. 1. Food and Environment Engineering Department, Heilongjiang East University, Harbin 150086, China;
    2. Chemical Engineering and Materials College, Heilongjiang University, Harbin 150080, China
  • Received:2011-10-01 Revised:2011-11-01 Online:2012-07-24 Published:2012-06-30
基于自身的量子限域效应、尺寸效应、介电限域效应、宏观量子隧道效应和表面效应,碲化镉(CdTe)纳米晶独特的性质在非线性光学、磁介质、催化、医药及功能材料等方面得到了广泛的应用,并且展现出极为广阔的应用前景,同时对生命科学和信息技术的持续发展以及物质领域的基础研究也产生了深刻的影响。本文以 CdTe 纳米晶为对象,详细介绍了其5种典型的制备方法和应用的最新进展。在制备方面,5种典型的制备方法各有利弊,如何在温和的条件下制备出形貌和尺寸可控的 CdTe 纳米晶仍是一个值得追求的目标。通过自组装技术可以制备形貌独特,性能优异的 CdTe 纳米材料,进而实现 CdTe 半导体纳米器件的研制,具有重要的科学意义,是今后研究的热门方向。在应用方面,CdTe纳米晶不但实现了其在光电器件、生物学等领域的应用,而且将会在这些领域继续深化和延伸,开发出新的应用领域。本文同时对 CdTe 纳米晶的发展趋势也进行了展望。
CdTe nanocrystals have attracted great attention due to their unique nature of quantum confinement effect, size effect, dielectric limited domain effect, macroscopic quantum tunneling effect and surface effect. They have become a kind of essential material in the field of nonlinear optics, magnetic agent, catalysis, medicine and functional materials and so on. The extensive applications in biological sciences and information technology are performed. In this paper, a detailed description about the production and application of CdTe nanocrystals is made. These five typical methods of preparation including organometallic thermal decomposition method,water phase method,hydrothermal method,solvothermal method and microwave thermal assist method are summarized in detail. Their corresponding advantages and weaknesses are figured out. The challenges about preparing CdTe nanocrystals are also indicated. The preparation of CdTe nanocrystals with controlled morphology and size under mild conditions is a worthy goal. CdTe nano-materials with unique morphology and excellent performance can be prepared by the self-assembly techniques. Such nano-materials can be used to meet the development of CdTe semiconductor nano-device, which is of important scientific significance and becomes the popular area of future research. The applications of CdTe nanocrystals in optoelectronic devices, biology, core-shell structure, nano-electronic devices are reviewed. These applications not only has been achieved in the fields of optoelectronic devices, biology and other fields, but also will continue to be deepen and extended to develop new fields. Finally, the future research directions are also proposed. Contents
1 Introduction
2 Synthesis of CdTe nanocrystals
2.1 Organometallic thermal decomposition method
2.2 Water phase method
2.3 Hydrothermal method
2.4 Solvothermal method
2.5 Microwave thermal assist method
3 Application of CdTe nanocrystalline
3.1 Optoelectronic devices
3.2 Biology
3.3 Other aspects
4 Conclusions and prospects

中图分类号: 

()
[1] Azzazy H M E, Mansour M M H, Kazmierczak S. C. Clinical Biochemistry, 2007, 40: 917-927
[2] Martyniuk P, Rogalski A. Progress in Quantum Electronics, 2008, 32: 89-120
[3] Huo Q. Colloids and Surfaces B: Biointerfaces, 2007, 59: 1-10
[4] 邢滨(Xing B), 李万万(Li W W), 窦红静(Dou H J), 孙康(Sun K). 高等学校化学学报(Chem. J. Chin. Univ.), 2008, 29: 230-234
[5] Peng Z A, Peng X G. J. Am. Chem. Soc., 2001, 123: 183-184
[6] Rogach A L, Kornowski A, Gao M Y, Eychmüller A, Weller H. J. Phys. Chem. B, 1999, 103: 3065-3069
[7] Rogach A, Kershaw S, Burt M, Harrison M, Kornowski A, Eychmüller A, Weller H. Adv. Mater., 1999, 11: 552-555
[8] Gaponik N, Talapin D V, Rogach A, Hoppe K, Shevchenko E V, Kornowski A, Eychmuller A, Weller H. J. Phys. Chem. B, 2002, 106: 7177-7185
[9] Yong K T, Law W C, Roy I, Jing Z, Huang H J, Swihart M T, Prasad P N. J. Biophotonics, 2011, 4 : 9-20
[10] Rogach A, Franzl T, Klar T A, Feldmann J, Gaponik N, Lesnyak V, Shavel A, Eychmuller A, Rakovich Y P, Donegan J F. J. Phys. Chem. C, 2007, 111: 14628-14637
[11] Chen Q F, Wang W X, Ge Y X, Li M Y, Xu S K, Zhang X J. Chin. J. Anal. Chem., 2007, 35: 135-138
[12] Zhang Q, Ding J, Shen Y L, Chen D P, Zhou Q L, Chen Q X, He Z W, Qiu J R. Journal of Alloys and Compounds, 2010, 508: L13-L15
[13] Deng D W, Qin Y B, Yang X, Yu J S, Pan Y. Journal of Crystal Growth, 2006, 296: 141-149
[14] Drost C S, Sgobba V, Guldi D M. J. Phys. Chem. C, 2007, 111: 9694-9703
[15] Wang Q, Kuo Y C, Wang Y W, Shin G, Ruengruglikit C, Huang Q R. J. Phys. Chem. B, 2006, 110: 16860 -16866
[16] Zhao K, Li J, Wang H Z, Zhuang J Q, Yang W S. J. Phys. Chem. C, 2007, 111: 5618-5621
[17] Priyam A, Ghosh S, Bhattachary S C, Saha A. Journal of Colloid and Interface Science, 2009, 333: 195-201
[18] Wuister S F, Swart I, van Driel F, Hickey S G, de Donegá C M. Nano Lett., 2003, 3: 503-507
[19] Li Y L, Jing L H, Qiao R R, Gao M Y. Chem. Commun., 2011, 47: 9293-9311
[20] Gaponik N, Rogach A L. Phys. Chem. Chem. Phys., 2010, 12: 8685-8693
[21] Dubavik A, Lesnyak V, Thiessen W, Gaponik N, Wolff T, Eychmüller A. J. Phys. Chem. C, 2009, 113: 4748-4750
[22] Zheng R B, Guo S J, Dong S J. Inorg. Chem., 2007, 46: 6920-6923
[23] Yu Y, Lai Y, Zheng X L, Wu J Z, Long Z Y, Liang C S. Spectrochimica Acta Part A, 2007, 68: 1356-1361
[24] Liu Y F, Yu J S. Journal of Colloid and Interface Science, 2009, 333: 690-698
[25] Guo J, Yang W L, Wang C C. J. Phys. Chem. B, 2005, 109: 17467-17473
[26] Bao H F, Wang E K, Dong S J. Small, 2006, 2: 476-480
[27] Qian H, Dong C, Weng J, Ren J. Small, 2: 747-751
[28] Sheng Z H, Han H Y, Hu X F, Chi C. Dalton Trans., 2010, 39: 7017-7020
[29] Li J, Hong X, Liu Y. Adv. Mater., 2005, 17: 163-166
[30] Wang R F, Wang Y L, Feng Q L, Zhou L Y, Gong F Z, Lan Y W. Materials Letters, 2012, 66: 261-263
[31] Yuwen L H, Lu H T, He Y, Chen L Q, Hu M, Bao B Q, Boey F, Zhang H, Wang L H. J. Mater. Chem., 2010, 20: 2788-2793
[32] Menezes F D, Galembeck A, Alves S. Junior Ultrasonics Sonochemistry, 2011, 18: 1008-1011
[33] Fang Z, Liu L, Xu L L, Yin X G, Zhong X H. Nanotechnology, 2008, 19 : 235603-235603
[34] Gu Z Y, Zou L, Fang Z, Zhu W H, Zhong X H. Nanotechnology, 2008, 19: 135604-135604
[35] Zou L, Gu Z Y, Zhang N, Zhang Y L, Fang Z, Zhu W H, Zhong X H. J. Mater. Chem., 2008, 18: 2807-2815
[36] 董翠芝(Dong C Z), 张丽芳(Zhang L F), 崔志敏(Cui Z M), 刘丽妹(Liu L M), 张庆军(Zhang Q J). 山东陶瓷(Shandong Ceramics), 2010, 33(1): 8-11
[37] Yang Q, Tang KB, Wang C R, Qian Y T Zhang S Y. J. Phys. Chem. B, 2006, 106: 9227-9230
[38] Bae Y, Myung N, Bard A J. Nano Lett., 2004, 4: 1153-1161
[39] Yu W W, Qu L H, Guo W Z, Peng X G. Chem. Mater., 2003, 15: 2854-2860
[40] Chin P T K, de Donegá C M, Bavel V S S, Meskers S C J, Sommerdijk N A J M, Janssen R A J. J. Am. Chem. Soc., 2007, 129: 14880-14886
[41] Yang W H, Li W W, Dou H J, Sun K. Materials Letters, 2008, 62: 2564-2566
[42] Wuister S F, van Driel F, Meijerink A. Phys. Chem. Chem. Phys., 2003, 5: 1253-1258
[43] Lobo A, Borchert H, Talapin D V, Weller H, Mller T. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, 286: 1-7
[44] Peng Q, Dong Y J, Deng Z X, Li Y D. Inorg. Chem., 2002, 41: 5249-5254
[45] Zhang H, Wang L P, Xiong H M, Hu L H, Yang B, Li W. Adv. Mater., 2003, 15: 1712-1715
[46] Li M Y, Ge Y X, Chen Q F, Xu S K, Wang N Z, Zhang X J. Talanta, 2007, 72: 89-94
[47] Zhao D, He Z K, Chan W H, Choi M M F. J. Phys. Chem. C, 2009, 113: 1293-1300
[48] Yang Z, Li L, Sun Z H, Ming T, Li G S, Wang J F, Yu J C. J. Mater. Chem., 2009, 19: 7002-7010
[49] Shen H B, Wang H Z, Chen X, Niu J Z, Xu W W, Li X M, Jiang X D, Du Z L, Li L S. Chem. Mater., 2010, 22: 4756-4761
[50] Dukes A D, McBride J R, Rosenthal S J. Chem. Mater., 2010, 22: 6402-6408
[51] Wang J, Long Y T, Zhang Y L, Zhong X H, Zhu L Y. ChemPhysChem, 2009, 10: 680-685
[52] Li L, Qian H, Ren J. Chem. Commun., 2005, 4: 528-530
[53] He Y, Lu H T, Sai L M, Lai W Y, Fan Q L, Wang L H, Huang W. J. Phys. Chem. B, 2006, 110: 13352-13356
[54] He Y, Lu H T, Sai L M, Lai W Y, Fan Q L, Wang L H, Huang W. J. Phys. Chem. B, 2006, 110: 13370-13374
[55] He Y, Sai L M, Lu M, Lu H T, Lai W Y, Fan Q L, Wang L H, Huang W. Chem. Mater., 2007, 19: 359-365
[56] Washington A L, Strouse G F. J. Am. Chem. Soc., 2008, 130: 8916-8922
[57] Song Q, Ai X, Topuria T, Rice P M, Alharbi F H, Bagabas A, Bahatta M, Bass J D, Kim H C, Scottand J C, Miller R D. Chem. Commun., 2010, 46: 4971-4973
[58] Hayakawa Y, Nonoguchi Y, Wu H P, Diau E W, Nakashima T, Kawai T. J. Mater. Chem., 2011, 21: 8849-8853
[59] Dong C Q, Ren J C. Luminescence, 2011, doi: 10.1002/bio. 1330
[60] Li C L, Murase N. Langmuir, 2004, 20(1): 1 -4
[61] Yang Z, Chang H T. Solar Energy Materials & Solar Cells, 2010, 94: 2046-2051
[62] Nozik A J. Physiea E: Low-dimensional Systems and Nanostructures, 2002, 14: 115-120
[63] Trupke T, Green M A, Wtirfel P. J. Appl. Phys., 2002, 92(3): 1668-1674
[64] Sehaller R D, Klimov V J. Phys. Rev. Lett., 2004, 92(18): 6601-6607
[65] Gupta A, Parikh V, Compaan A D. Solar Energy Materials & Solar Cells, 2006, 90: 2263-2271
[66] Major J D, Durose K. Thin Solid Films, 2009, 517: 2419-2422
[67] Lan G Y, Yang Z, Lin Y W, Lin Z H, Liao H Y, Chang H T. J. Mater. Chem., 2009, 19: 2349-2355
[68] Ruland A, Christian S D, Sgobba V, Guldi D M. Adv. Mater., 2011, 23: 4573-4577
[69] Bang J H, Kamat P V. ACS Nano, 2009, 3(6): 1467-1476
[70] Brown K A, Dayal S, Ai X, Rumbles G, King P W. J. Am. Chem. Soc., 2010, 132: 9672-9680
[71] Zhang Y, Deng Z T, Yue J C, Tang F Q, Wei Q. Analytical Biochemistry, 2007, 364: 122-127
[72] Cui R J, Pan H C, Zhu J J, Chen H Y. Anal. Chem., 2007, 79: 8494-8501
[73] Winiarz J G. J. Phys. Chem. C, 2007, 111 : 1904-1911
[74] Ma Q, Cui H L, Su X G. Biosensors and Bioelectronics, 2009, 25: 839-844
[75] Zhang W, He X W, Chen Y, Li W Y, Zhang Y K. Biosensors and Bioelectronics, 2011, 26: 2553-2558
[76] Gao F, Lv C F, Han J X, Li X Y, Zhang J, Chen C, Li Q, Sun X F, Zheng J C, Bao L R, Li X. J. Phys. Chem. C, 2011, doi: 10.1021/jp205021j
[77] Liu J J, Shi Z X, Yu Y C, Yang R Q, Zuo S L. Journal of Colloid and Interface Science, 2010, 342: 278-282
[78] Koole R, Liljeroth P, de Donegá C M, Vanmaekelbergh D, Meijerink A. J. Am. Chem. Soc., 2006, 128: 10436-10441
[79] Mayilo S, Hilhorst J, Susha A S, Hhl C, Franzl T, Klar T A, Rogach A L, Feldmann J. J. Phys. Chem. C, 2008, 112: 14589-14594
[80] Idowu M, Chen J Y, Nyokong T. New J. Chem., 2008, 32: 290-296
[81] Tang Z Y, Ozturk B, Wang Y, Kotov N A. J. Phys. Chem. B, 2004, 108: 6927-6931
[82] Cui S C, Tachikawa T, Fujitsuka M, Majima T. J. Phys. Chem. C, 2008, 112: 19625-19634
[83] Li J, Mei F, Li W Y, He X W, Zhang Y K. Spectrochimica Acta Part A, 2008, 70: 811-817
[84] Moeno S, Antunes E, Khene S, Litwinski C, Nyokong T. Dalton Trans., 2010, 39: 3460-3471
[85] Du D, Chen S Z, Song D D, Li H B, Chen X. Biosensors and Bioelectronics, 2008, 24: 475-479
[86] Du D, Chen W J, Cai J, Zhang J, Qu F, Li H B. Journal of Electroanalytical Chemistry, 2008, 623: 81-85
[87] Ge S G, Zhang C C, Zhu Y N, Yu J H, Zhang S S. Analyst, 2010, 135: 111-115
[88] Sun J F, Ren C L, Liu L H, Chen X G. Chinese Chemical Letters, 2008, 19: 855-859
[89] Ren X L, Yang L Q, Tang F Q, Yan C M, Ren J. Biosensors and Bioelectronics, 2010, 26: 271-274
[90] Zhao Z Y, Arrandale M, Vassiltsova O V, Petrukhina M A, Carpenter M A. Sensors and Actuators B, 2009, 141: 26-33
[91] Li J, Zou G Z, Hu X F, Zhang X L. Journal of Electroanalytical Chemistry, 2009, 625: 88-91
[92] Wu P, Yan X P. Biosensors and Bioelectronics, 2010, 26: 485-490
[93] Zhao J J, Chen M, Yu C X, Tu Y F. Analyst, 2011, 136: 4070-4074
[94] Lu Z S, Qiao Y, Zheng X T, Chan-Parka M B. Li C M. Med. Chem. Commun., 2010, 1: 84-86
[95] Shan Y, Xu J J, Chen H Y. Chem. Commun., 2010 46: 5079-5081
[96] 孙捷(Sun J). 半导体技术(Semiconductor Technology), 2005, 30(1): 61-65
[97] Wang Y F, Li M J, Jia H Y, Song W, Han X X, Zhang J H, Yang B, Xu W Q, Zhao B. Spectrochimica Acta Part A, 2006, 64: 101-105
[98] Rom evi Dc' N, Rom evii Dc' M, Kostii Dc' R, Stojanovii Dc' D, Milutinovii Dc' A, Karczewski G, Galazka R. Journal of Alloys and Compounds, 2009, 481: 6-9
[99] Yang J, Zhou Y L, Zheng S L, Liu X F, Qiu X H, Tang Z Y, Song R, He Y J, Ahn C W, Kim J W. Chem. Mater., 2009, 21: 3177-3182
[100] Liu M X, Gan L H, Zeng Y L, Xu Z J, Hao Z X, Chen L W. J. Phys. Chem. C, 2008, 112: 6689-6694
[101] Zhang Z L, Tang Z Y, Kotov N A, Glotzer S C. Nano Lett., 2007, 7(6): 1670-1675
[102] Jin L H, Shang L, Zhai J F, Li J, Dong S J. J. Phys. Chem. C, 2010, 114: 803-807
[103] Chen H J, Lesnyak V, Bigall N C, Gaponik N, Eychmüller A. Chem. Mater., 2010, 22: 2309-2314
[104] Tang Z Y, Kotov N A, Giersig M. Science, 2002, 12: 237-240
[105] Bao H B, Gong Y J, Li Z, Gao M Y. J. Chem. Mater., 2004, 16: 3853-3859
[106] Hewa-Kasakarage N N, Gurusinghe N P, Zamkov M. J. Phys. Chem. C, 2009, 113: 4362-4368
[107] Zhong H Z, Scholes G D. J. Am. Chem. Soc., 2009, 131: 9170-9171
[108] Koeneman B A, Zhang Y, Hristovski K, Westerhoff P, Chen Y S, Crittenden J C, Capco D G. Toxicology in Vitro, 2009, 23: 955-962
[109] Cho S J, Maysinger D, Jain M, Rder B, Hackbarth S, Winnik F M. Langmuir, 2007, 23: 1974-1980
[110] Ma Q, Yu W, Su X G. Talanta, 2010, 82: 51 -55
[111] Gagné F, Auclair J, Turcotte P, Fournier M, Gagnon C, Sauvé S, Blaise C. Aquatic Toxicology, 2008, 86: 333-340
[112] James M, Tsay, Michalet X. Chemistry & Biology, 2005, 12: 1159-1161
[113] Zhao L Z, Liu R T, Zhao X C, Yang B J, Gao C Z, Hao X P, Wu Y Z. Science of the Total Environment, 2009, 407: 5019-5023
[114] Rzigalinski B A, Strobl J S. Toxicology and Applied Pharmacology, 2009, 238: 280-288
[115] Wang L L, Zheng H Z, Long Y J, Gao M, Hao J Y, Du J, Mao X J, Zhou D B. Journal of Hazardous Materials, 2010, 177: 1134-1137
[116] Xiao J B, Bai Y L, Wang Y F, Chen J W, Wei X L. Spectrochimica Acta Part A, 2010, 76: 93 -97
[117] Su Y Y, Hu M, Fan C H, He Y, Li Q N, Li W X, Wang L H, Shen P P, Huang Q. Biomaterials, 2010, 31: 4829-4834
[118] Lovri J, Cho S J, Winnik F M, Maysinger D. Chemistry & Biology, 2005, 12: 1227-1234
[119] Hild W A, Breunig M, Goepferich A. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68: 153-168
[120] Jr M B, Moronne M, Gin P, Weiss S, Alivisatos A P. Science, 1998, 281: 2013-2016
[121] Hu M, Tian J, Lu H T, Weng L X, Wang L H. Talanta, 2010, 82: 997-1002
[122] Cao L H, Ye J, Tong L L, Tang B. Chem. Eur. J., 2008, 14: 9633-9640
[123] Agrawal M, Retama J R, Zafeiropoulos N E, Gaponik N, Gupta S, Cimrova V, Lesnyak V, Cabarcos E L, Tzavalas S, Reyna R R, Eychmüller A, Stamm M. Langmuir, 2008, 24: 9820-9824
[124] Qu F, Zhou X F, Xu J, Li H B, Xie G Y. Talanta, 2009, 78: 1359-1363
[125] Hua L J, Zhou J J, Han H Y. Electrochimica Acta, 2010, 55: 1265-1271
[126] Hua L J, Han H Y, Zhang X J. Talanta, 2009, 77: 1654-1659
[127] Shang L, Zhang L H, Dong S J. Analyst, 2009, 134: 107-113
[128] Li J, Bao D S, Hong X, Li D, Li J H, Bai Y B, Li T J. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, 257/258: 267-271
[129] Dimitrov S D, Dooley C J, Trifonov A A, Fiebig T. J. Phys. Chem. C, 2009, 113: 4198-4201
[130] Wang Y, Zheng J W, Zhang Z J, Yuan C W, Fu D G. Colloids and Surfaces A: Physicochem. Eng. 2009, 342: 102-106
[131] Wang Y Q, Ye C, Zhu Z H, Hu Y Z. Analytica Chimica Acta, 2008, 610: 50-56
[132] Sun X Y, Liu B, Xia K H. Luminescence, 2011, 26(6): 616-621
[133] Cao M, Liu M G, Cao C, Xia Y S, Bao L J, Jin Y Q, Yang S, Zhu C Q. Spectrochimica Acta Part A, 2010, 75: 1043-1046
[134] Wu W T, Zhou T, Berliner A, Banerjee P, Zhou S Q. Angew. Chem. Int. Ed., 2010, 49: 6554 -6558
[135] Wang J H, Wang H Q, Zhang H L, Li X Q, Hua X F, Huang Z L, Zhao Y D. Colloids and Surfaces A: Physicochem. Eng., 2007, 305: 48-53
[136] Yu D H, Wang Z, Liu Y, Jin L, Cheng Y M, Zhou J G, Cao S G. Enzyme and Microbial Technology, 2007, 41: 127-132
[137] Wang L, Peng J J, Liu Z W, He Y Q. Luminescence, 2010, 25(6): 424-430
[138] Zhao M X, Xia Q, Feng X D, Zhu X H, Mao Z W, Ji L N, Wang K. Biomaterials, 2010, 31: 4401-4408
[139] Li Y Q, Guan L Y, Wang J H, Zhang H L, Chen J, Lin S, Chen W, Zhao Y D. Biosensors and Bioelectronics, 2011, 26(5): 2317-2339
[140] Kjllman T H M, Peng H, Soeller C, Travas-Sejdic J. Analyst, 2010, 135: 488-494
[141] Li J, Zhao X W, Zhao Y J, Hu J, Xu M, Gu Z Z. J. Mater. Chem., 2009, 19: 6492-6497
[142] Niu S Y, Li Q Y, Qu L J, Wang W. Analytica Chimica Acta, 2010, 680: 54-62
[143] Hu X F, Wang R Y, Ding Y, Zhang X L, Jin W R. Talanta, 2010, 80: 1737-1743
[144] Zhao D, Zhang J M, Dong Q X, Guo N, Xu S C, Sun B, Bu Y H. J. Chem. Eng., 2007, 15(6): 791-794
[145] Li D, Li G P, Guo W W, Li P C, Wang E K, Wang J. Biomaterials, 2008, 29: 2776-2782
[146] Xu Q, Wang J H, Wang Z, Yin Z H, Yang Q, Zhao Y D. Electrochemistry Communications, 2008, 10: 1337-1339
[147] Li J, Li M J, Li X Z, Tang J L, Kang J, Zhang H Q, Zhang Y H. Colloids and Surfaces B: Biointerfaces, 2008, 67: 79-84
[148] Hezinger A F E, Teβmar J, Gpferich A. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68: 138-152
[149] Liu Y F, Xie B, Yin Z G, Fang S M, Zhao J B. Eur. J. Inorg. Chem., 2010, 10: 1501-1506
[150] Dubertret B, Skourides P, Norris D J, Noireaux V, Brivanlou A H, Libchaber A. Science, 2002, 298 : 1759-1962
[151] He Y, Lu H T, Sai L M, Su Y Y, Hu M, Fan C H, Huang W, Wang L H. Adv. Mater., 2008, 20: 3416-3421
[152] Menezes de F D, Brasil J A G, Moreira W L, Barbosa L C, Cesar C L, de Ferreira R C, de Farias P M A, Santos B S. Microelectronics Journal, 2005, 36: 989-991
[153] Peng H, Zhang L J, Soeller C, Travas-Sejdic J. Journal of Luminescence, 2007, 127: 721-726
[154] Aldeek F, Balan L, Medjahdi G, Roques-Carmes T, Malval J P, Mustin C, Ghanbaja J, Schneider R. J. Phys. Chem. C, 2009, 113: 19458-19467
[155] Zeng Q H, Kong X G, Sun Y J, Zhang Y L, Tu L P, Zhao J L, Zhang H. J. Phys. Chem. C, 2008, 112: 8587-8593
[156] Blackman B, Battaglia D, Peng X G. Chem. Mater., 2008, 20: 4847-4853
[157] Zhang W J, Chen G J, Wang J, Ye B C, Zhong X H. Inorganic Chemistry, 2009, 48: 9723- 9731
[158] Li Z, Dong C Q, Tang L C, Zhu X, Chen H J, Ren J C. Luminescence, 2010, 26(6): 439-448
[159] Zhou L, Gao C, Xu W J, Wang X, Xu Y H. Biomacromolecules, 2009, 10: 1865-1874
[160] Tang M L, Li Z F, Chen L, Xing T R, Hu Y, Yang B, Ruan D Y, Sun F, Wang M. Biomaterials, 2009, 30 : 4948-4955
[161] Chan W C W, Nie S M. Science, 1998, 281: 2016-2018
[162] Han M Y, Gao X H, Su J Z, Nie S M. Nature Biotechnology, 2001, 19: 631-635
[163] Yang C H, Huang K S, Lin Y S, Lu K, Tzeng C C, Wang E C, Lin C H, Hsu W Y, Chang J Y. Lab Chip, 2009, 9: 961-965
[164] Wang J H, Li Y Q, Zhang H L, Wang H Q, Lin S, Chen J, Zhao Y D, Luo Q M. Colloids and Surfaces A: Physicochem. Eng., 2010, 364: 82-86
[165] Kanwal S, Traore Z, Zhao C F, Su X G. Journal of Luminescence, 2010, 130: 1901-1906
[166] Ma Q, Su X G, Wang X Y, Wan Y, Wang C, Yang B, Jin Q H. Talanta, 2005, 67: 1029-1034
[167] Xiao J B, Chen L S, Yang F, Liu C X, Bai Y L. Journal of Hazardous Materials, 2010, 182: 696-703
[168] Yang P, Zhang A Y, Sun H S, Liu F T, Jiang Q H, Cheng X. Journal of Colloid and Interface Science, 2010, 345: 222-227
[169] Xie M, Luo K, Huang B H, Liu S L, Hu J, Cui D, Zhang Z L, Xiao G F, Pang D W. Biomaterials, 2010, 31: 8362-8370
[170] Wolcott A, Gerion D, Visconte M, Sun J, Schwartzberg A, Chen S, Zhang J Z. J. Phys. Chem. B, 2006, 110: 5779-5789
[171] Shao L W, Dong C Q, Huang X Y, Ren J C. Chinese Chemical Letters, 2008, 19: 707-710
[172] Idowu M, Lamprecht E, Nyokong T. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198: 7-12
[173] Weng J F, Song X T, Qian H F, Chen K Y, Xu X M, Cao C X, Ren J C. Talanta, 2006, 70: 397-402
[174] Zheng Y G, Gao S J, Ying J Y. Adv. Mater., 2007, 19: 376-380
[175] Byrne S J, Corr S A, Rakovich T Y, Gun’ko Y K, Rakovich Y P, Donegan J F, Mitchell S, Volkov Y. J. Mater. Chem., 2006, 16: 2896-2902
[176] Bae P K, Kim K N, Lee S J, Chang H J, Lee C K, Park J K. Biomaterials, 2009, 30: 836-842
[177] Jamieson T, Bakhshi R, Petrova D, Pococka R, Imani M, Seifalian A M. Biomaterials, 2007, 28: 4717-4732
[178] Yordanov G, Simeonova M, Alexandrova R, Yoshimurae H, Dushkin C. Colloids and Surfaces A: Physicochem. Eng., 2009, 339: 199-205
[179] Li Z H, Wang K M, Tan W H, Li J, Fu Z Y, Ma C B, Li H M, He X X, Liu J B. Analytical Biochemistry, 2006, 354: 169-174
[180] Green M, Williamson P, Samalova M, Davis J, Brovelli S, Dobsond P, Cacialli F. J. Mater. Chem., 2009, 19: 8341-8346
[181] Dong W, Guo L, Wang M, Xu S K. Journal of Luminescence, 2009, 129: 926-930
[182] Tian J N, Liu R J, Zhao Y C, Xu Q, Zhao S L. Journal of Colloid and Interface Science, 2009, 336: 504-509
[183] Juzenas P, Chen W, Sun Y P, Coelho M A N, Generalov R, Generalova N, Christensen I L. Advanced Drug Delivery Reviews, 2008, 60: 1600-1614
[184] Yong K T, Roy I, Law W C, Hu R. Chem. Commun., 2010, 46: 7136-7138
[185] Wu C H, Shi L X, Li Q N, Jiang H, Selke M, Ba L, Wang X. Chem. Res. Toxicol., 2010, 23: 82-88
[186] Zhou Y Y, Shi L X, Li Q N, Jiang H, Lv G, Zhao J, Wu C H, Selke M, Wang X M. Biomaterials, 2010, 31: 4958-4963
[187] Chin P T K, Buckle T, de Miguel A A, Meskers S C J, Janssen R A J, van Leeuwen F W B. Biomaterials, 2010, 31: 6823-6832
[188] Li H B, Qu F G. Chem. Mater., 2007, 19: 4148-4154
[189] Li Y S, Jiang F L, Xiao Q, Li R, Li K, Zhang M F, Zhang A Q, Sun S F, Liu Y. Applied Catalysis B: Environmental, 2010, 101: 118-129
[190] Jin L, Yu D D, Liu Y, Zhao X L, Zhou J G. Talanta, 2008, 76: 1053-1057
[191] Wang C, Ma Q, Dou W C, Kanwal S, Wang G N, Yuan P F, Su X G, Talanta, 2009, 77: 1358-1364
[192] Dong H T, Liu Y, Ye Z Q, Zhang W Z, Wang G L, Liu Z G, Yuan J L. Helvetica Chimica Acta, 2009, 92: 2249-2256
[193] Yang L X, Chen B B, Luo S L, Li J X, Liu R H, Cai Q Y. Environ. Sci. Technol., 2010, 44: 7884-7889
[194] Li X Z, Wang L, Zhou C, Guan T T, Li J, Zhang Y H. Clinica Chimica Acta, 2007, 378: 168-174
[195] Lan X M, Cao X B, Qian W H, Gao W J, Zhao C, Guo Y. Journal of Solid State Chemistry, 2007, 180: 2340-2345
[196] Jańczewski D, Tomczak N, Khin Y W, Han M Y, Vancso G J. European Polymer Journal, 2009, 45: 3-9
[197] Gaponik N P, Talapina D V, Rogach A L. Phys. Chem. Chem. Phys., 1999, 1: 1787-1789
[198] Zhou L, Gao C, Xu W J. J. Mater. Chem., 2009, 19: 5655-5664
[199] Beek V R, Zoombelt A P, Jenneskens L W, van Walree C A, de Donegá C M, Veldman D, Janssen R A J. Chem. Eur. J., 2006, 12: 8075-8083
[200] Li M J, Zhang H, Zhang J H, Wang C L, Han K, Yang B. Journal of Colloid and Interface Science, 2006, 300: 564-568
[201] Cao X D, Li C M, Bao H F, Bao Q L, Dong H. Chem. Mater., 2007, 19: 3773-3779
[202] Liu J G, Liang J G, Han H Y, Sheng Z H. Materials Letters, 2009, 63: 2224-2226
[203] Lei Y, Tang H Y, Zhou C J, Zhang T T, Feng M F, Zou B S. Journal of Luminescence, 2008, 128: 277-281
[204] Sun H Z, Zhang H, Zhang J H, Ning Y, Yao T J, Bao X, Wang C L, Li M J, Yang B. J. Phys. Chem. C, 2008, 112: 2317-2324
[205] Zeng Y L, Tang C R, Tian G, Yi P G, Huang H, Hu N, Li S, Huang H W, Li C X, Lin B G, Yu X Y, Ling Y L, Xia X D. Chemical Engineering Journal, 2010, 156: 524-527
[206] Becue A, Moret S, Champod C, Margot P. Forensic Science International, 2009, 191: 36-41
[207] Vinayaka A C, Basheer S, Thakur M S. Biosensors and Bioelectronics, 2009, 24: 1615-1620
[208] Wang Z P, Li J, Liu B, Li J H. Talanta, 2009, 77: 1050-1056
[209] Zeng Q H, Zhang Y L, Song K, Kong X G, Aalders M C G, Zhang H. Talanta, 2009, 80: 307-312
[210] Chen L Y, Qi Z J, Chen R J, Li Y, Liu S Q. Clinica Chimica Acta, 2010, 411: 1969-1975
[211] Mattoussi H, Mauro J M, Goldman E R, Anderson G P, Sundar V C, Mikulec F V, Bawendi M G. J. Am. Chem. Soc., 2000, 122(449): 12142-12150
[212] Ma Q, Wang X Y, Li Y B, Shi Y H, Su X G. Talanta, 2007, 72: 1446-1452
[213] Ma Q, Wang X Y, Li Y B, Su X G, Jin Q H. Luminescence, 2007, 22: 438-445
[214] Chen W, Peng C F, Jin Z Y, Qiao R R, Wang W Y, Zhu S F, Wang L B, Jin Q H, Xu C L. Biosensors and Bioelectronics, 2009, 24: 2051-2056
[215] Larson D R, Zipfel W R, Williams R M, Clark S W, Bruchez M P, Wise F W, Webb W W. Science, 2003, 300: 1434-1436
[216] Tsay J M, Pflughoefft M, Bentolila L A, Weiss S. J. Am. Chem. Soc., 2004, 126(7): 1926- 1927
[217] Mei Y L, Wang H S, Li Y F, Pan Z Y, Jia W L. Electroanalysis, 2010, 22(2): 155-160
[218] Xia Y S, Zhu C Q. Analyst, 2008, 133: 928 -932
[219] Schps O, Thomas N L, Woggon U M, Artemyev V. J. Phys. Chem. B, 2006, 110: 2074-2079
[220] Lambert K, de G B, Moreels I, Hens Z. Chem. Mater., 2009, 21: 778-780
[221] Chuang C H, Lo S S, Scholes G D, Burda C. J. Phys. Chem. Lett., 2010, 1: 2530-2535
[222] Rawalekar S, Kaniyankandy S, Verma S, Ghosh H N. J. Phys. Chem. C, 2010, 114: 1460-1466
[223] Deng Z, Schulz O, Lin S, Ding B Q, Liu X W, Wei X X, Ros R, Yan H, Liu Y. J. Am. Chem. Soc., 2010, 132: 5592-5593
[224] Nakashima T, Sakashita M, Nonoguchi Y, Kawai T. Macromolecules, 2007, 40: 6540-6544
[225] Wang S G, Li Y X, Wang Y Z, Yang Q B, Wei Y. Materials Letters, 2007, 61: 4674-4678
[226] Kinkead B, Hegmann T. J. Mater. Chem., 2010, 20: 448-458
[227] Zrazhevskiy P, Gao X H. Nano Today, 2009, 4: 414-428
[228] Zhang H Y, Sun P, Liu C, Gao H Y, Xu L R, Fang J, Wang M, Liu J L, Xu S K. Luminescence, 2011, 26: 86-92
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[4] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[5] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[6] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[7] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[8] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[9] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[10] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[11] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[12] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[13] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[14] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[15] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
阅读次数
全文


摘要

碲化镉纳米晶的制备及应用