English
新闻公告
More
化学进展 2012, Vol. 24 Issue (07): 1245-1251 前一篇   后一篇

• 综述与评论 •

CO催化氧化用纳米材料及其最新研究成果

张俊1,2, 陈婧1,2, 黄新松2, 李广社*2   

  1. 1. 内蒙古大学化学化工学院 呼和浩特 010021;
    2. 中国科学院煤制乙二醇及相关技术重点实验室 福建物质结构研究所 福州350002
  • 收稿日期:2011-09-01 修回日期:2012-02-01 出版日期:2012-07-24 发布日期:2012-06-30
  • 通讯作者: 李广社 E-mail:guangshe@fjirsm.ac.cn
  • 基金资助:

    国家自然科学基金项目(No.21025104)和国家重点基础研究发展计划(973)项目(No.2011CBA00501)资助

Recent Research Progress and Applications of Nano Catalytic Materials for CO Oxidation

Zhang Jun1,2, Chen Jing1,2, Huang Xinsong2, Li Guangshe2   

  1. 1. School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China;
    2. Key Laboratory of Coal to Ethylene Glycol, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
  • Received:2011-09-01 Revised:2012-02-01 Online:2012-07-24 Published:2012-06-30
当前,环境问题和能源危机已经威胁到人类的健康和生存。用于环境治理和化学能源合成新概念的纳米催化材料越来越受到人们的关注。催化作为一个特殊的纳米现象,是纳米材料应用领域的一个重要方向,在环境净化、能量转化和新化学品的生产等方面具有广泛的应用前景。早期的一氧化碳(CO)催化氧化研究主要集中在催化剂的制备方法以及制备条件对催化反应的影响等方面。本文针对CO催化氧化这一基础课题,以影响CO催化氧化的关键因素(如金属颗粒的大小,金属与载体之间的相互作用以及载体本身的作用等)为主线,简要概述了近年来CO催化氧化的催化机理及相关催化剂的最新研究进展。同时,结合我们课题组的一些最新研究结果,进一步指出了纳米材料在CO催化氧化方面还存在的一些值得关注的问题,并对未来CO氧化催化剂的研究做出展望,提出一些可行的研究方向。
Recently, the issues of environmental pollution and the energy crisis have threatened the health and survival of human being. Nanomaterials used for the remediation of environment and the synthesis of chemical energy source have drawn increasing attention. As an inherently nanoscopic phenomenon, catalysis with important applications in environmental cleaning, energy conversion, and production of new chemicals, has always been an important research direction in the application of nanomaterials. Previously, the research work of CO oxidation was mainly concentrated on the effects of preparative routes and synthesis parameters of catalysts on the catalytic reactions. This review aims at the fundamental topic of CO catalytic oxidation, in which the main impact factors (e.g., dimensions of metal nano-particles on the supports, the interactions between metals and supports, and the roles of support-self) of CO oxidation are taken as the focus, and the developments of the catalytic mechanisms and various catalysts for carbon monoxide (CO) oxidation are summarized. Meanwhile, combining with the latest work in our group, some noteworthy problems about the applications of nano catalytic materials in CO conversion are pointed out. Finally, some suggestions for the preparation of CO oxidation catalysts, and some feasible research directions are put forward. Contents
1 Introduction
2 Catalytic mechanisms for CO oxidation
2.1 Catalytic models of Langmuir-Hinshelwood and Eley-Rideal
2.2 Catalytic mechanism of loaded catalysts with metals
2.3 Catalytic mechanism of metal oxides
3 Research progress of catalysts
3.1 Disperse states of metal particles on supports
3.2 Interactions between metal particles and supports——interfacial interactions
3.3 Roles of metal oxides in catalytic reaction
4 Conclusions and outlook

中图分类号: 

()
[1] Han M, Wang X, Shen Y, Tang C, Li G, Smith R L Jr. J. Phys. Chem. C, 2010, 114: 793-798
[2] Liu H C, Kozlov A I, Kozlova A P, Shido T, Iwasawa Y. Phys. Chem. Chem. Phys., 1999, 1: 2851-2860
[3] Min B K, Friend C M. Chem. Rev., 2007, 107: 2709-2724
[4] Haruta M, Yamada N, Kobayashi T, Iijima S. J. Catal., 1989, 115: 301-309
[5] Engel T, Ertl G. Advances in Catalysis, 1979, 1-78
[6] Campbell C T, Ertl G, Kuipers H, Segnet J. J. Chem. Phys., 1980, 73: 5862-5873
[7] Oh S H, Fisher G B, Carpenter J E, Goodman D W. J. Catal., 1986, 100: 360-376
[8] Peden C H F, Goodman D W, Blair D S, Berlowitz P J, Fisher G B, Oh S H. J. Phys. Chem., 1988, 92: 1563-1567
[9] Berlowitz P J, Peden C H F, Goodman D W. J. Phys. Chem., 1988, 92: 5213-5221
[10] Cant N W, Hicks P C, Lennon B S. J. Catal., 1978, 54: 372-383
[11] Peden C H F, Goodman D W. J. Phys. Chem., 1986, 90: 1360-1365
[12] Lee H L, White J M. J. Catal., 1980, 63: 261-264
[13] Peden C H F. ACS Symp. Ser., 1992, 482: 143-159
[14] Peden C H F, Goodman D W, Weisel M D, Hoffmann F M. Surf. Sci., 1991, 253: 44-58
[15] Kaul D J, Wolf E E. J. Catal., 1985, 93: 321-330
[16] Schubert M M, Hackenberg S, Van veen A C, Muhler M, Plzak V, Behm R J. J. Catal., 2001, 197: 113-122
[17] Fernandez-Garcia M, Martinez-Arias A, Salamanca L N, Coronado J M, Anderson J A, Conesa J C, Soria J. J. Catal., 1999, 187: 474-485
[18] Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet M J, Delmon B. J. Catal., 1993, 144: 175-192
[19] Iizuka Y, Tode T, Takao T, Yatsu K, Takeuchi T, Tsubota S, Haruta M. J. Catal., 1999, 187: 50-58
[20] Doering D L, Dickinson J T, Poppa H. J. Catal., 1982, 73: 91-103
[21] Bunluesin T, Putna E S, Gorte R J. Catal. Lett., 1996, 41: 1-5
[22] Dow W P, Huang T J. J. Catal., 1996, 160: 171-182
[23] Horvath D, Toth L, Guczi L. Catal. Lett., 2000, 67: 117-128
[24] Sadykov V A, Tikhov S F. J. Catal., 1997, 165: 279-283
[25] Gupta N M, Tripathi A K. J. Catal., 1999, 187: 343-347
[26] Jansson J. J. Catal., 2000, 194: 55-60
[27] Jansson J, Skoglundh M, Fridell E, Thormahlen P. Top. Catal., 2001, 16: 385-389
[28] Shen S, Zhuang J, Yang Y, Wang X. Nanoscale, 2011, 3: 272-279
[29] Zhou H P, Wu H S, Shen J, Yin A X, Sun L D, Yan C H. J. Am. Chem. Soc., 2010, 132: 4998-4999
[30] Yamaguchi N, Kamiuchi N, Muroyama H, Matsui T, Eguchi K. Catal. Today, 2011, 164: 169-175
[31] Slavinskaya E M, Gulyaev R V, Stonkus O A, Zadesenets A V, Plyusnin P E, Shubin Y V, Korenev S V, Ivanova A S, Zaikovskii V I, Danilova I G, Boronin A I. Kinet. Catal., 2011, 52: 282-295
[32] Park E D, Lee J S. J. Catal., 1999, 186: 1-11
[33] Kozlov A I, Kozlova A P, Liu H C, Iwasawa Y. Appl. Catal. A, 1999, 182: 9-28
[34] Yuan Y Z, Asakura K, Wan H L, Tsai K, Iwasawa Y. Catal. Lett., 1996, 42: 15-20
[35] Bollinger M A, Vannice M A. Appl. Catal. B, 1996, 8: 417-443
[36] Haruta M. Catal. Today, 1997, 36: 153-166
[37] Yuan Y Z, Asakura K, Kozlova A P, Wan H L, Tsai K R, Iwasawa Y. Catal. Today, 1998, 44: 333-342
[38] Cunningham D A H, Vogel W, Kageyama H, Tsubota S, Haruta M. J. Catal., 1998, 177: 1-10
[39] Okumura M, Nakamura S, Tsubota S, Nakamura T, Azuma M, Haruta M. Catal. Lett., 1998, 51: 53-58
[40] Lin S D, Bollinger M, Vannice M A. Catal. Lett., 1993, 17: 245-262
[41] Kylhammar L, Carlsson P A, Skoglundh M. J. Catal., 2011, 284: 50-59
[42] Xiao G, Xian C, Li H, Chen L. J. Nanosci. Nanotechnol., 2011, 11: 1923-1928
[43] Liu B S, Au C T. Appl. Catal. A, 2003, 244: 181-195
[44] Alayoglu S, Nilekar A U, Mavrikakis M, Eichhorn B. Nat. Mater., 2008, 7: 333-338
[45] Nilekar A U, Alayoglu S, Eichhorn B, Mavrikakis M. J. Am. Chem. Soc., 2010, 132: 7418-7428
[46] Pan X, Bao X. Acc. Chem. Res., 2011, 44: 553-562
[47] Menon M, Andriotis A N, Froudakis G E. Chem. Phys. Lett., 2000, 320: 425-434
[48] Santiso E E, George A M, Turner C H, Kostov M K, Gubbins K E, Buongiorno-Nardelli M, Sliwinska-Bartkowiak M. Appl. Surf. Sci., 2005, 252: 766-777
[49] Li B D, Wang C, Yi G Q, Lin H Q, Yuan Y Z. Catal. Today, 2011, 164: 74-79
[50] Huang X S, Sun H, Wang L C, Liu Y M, Fan K N, Cao Y. Appl. Catal. B, 2009, 90: 224-232
[51] Wu H J, Wang L D. Catal. Commun., 2011, 12: 1374-1379
[52] Lermontov A S, Ivanov V K, Yakimova M S, Baranchikov A E, Polezhaeva O S, Tretyakov Y D. Dokl. Chem., 2010, 430: 4-7
[53] Zhang D, Niu F, Yan T, Shi L, Du X, Fang J. Appl. Surf. Sci., 2011, 257: 10161-10167
[54] Ching S, Kriz D A, Luthy K M, Njagi E C, Suib S L. Chem. Commun., 2011, 8286-8288
[55] Xie X, Li Y, Liu Z Q, Haruta M, Shen W. Nature, 2009, 458: 746-749
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 薛宗涵, 马楠, 王炜罡. 大气中的单环芳香族硝基化合物[J]. 化学进展, 2022, 34(9): 2094-2107.
[7] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[8] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[9] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[10] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[11] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[12] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[13] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[14] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[15] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.