English
新闻公告
More
化学进展 2012, Vol. 24 Issue (06): 981-1000 前一篇   后一篇

• 量子化学专辑 •

研究激发态的多体格林函数理论

马玉臣*, 刘成卜   

  1. 山东大学化学与化工学院 济南 250100
  • 收稿日期:2011-11-01 修回日期:2012-03-01 出版日期:2012-06-24 发布日期:2012-05-11
  • 通讯作者: 马玉臣 E-mail:myc@sdu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21173130)资助

Many-Body Green's Function Theory for the Study of Excited States

Ma Yuchen, Liu Chengbu   

  1. School of Chemistry and Chemical Engineering, Jinan 250100, China
  • Received:2011-11-01 Revised:2012-03-01 Online:2012-06-24 Published:2012-05-11
本文介绍的多体格林函数理论是一种建立在一套格林函数(包括单粒子格林函数和双粒子格林函数)方程基础上的,用以研究物质激发态性质的第一性原理方法。该理论包括计算准粒子性质的GW方法和描述电子-空穴对运动的Bethe-Salpeter方程。GW方法可以以很高的精度计算轨道能量、能带结构、准粒子寿命等物理量;Bethe-Salpeter方程则在研究激发能、光吸收谱、激发态动力学等光学性质上有广泛的应用前景。多体格林函数理论通过自能算符描述电子之间以及电子与空穴之间的交换关联作用。本文将详细阐述该理论的基本概念和原理,并对其在各种材料中的应用做简要介绍。
Many-body Green's function theory is a first-principle method used to investigate excited states, which is based on a set of Green's function equations. This theory includes GW method, which is used to calculate the properties of quasiparticles, and Bethe-Salpeter equation, which describes the motion of the electron-hole pair. GW method predicts orbital energies, band structures and quasiparticle lifetimes with high accuracy, while Bethe-Salpeter equation is a promising approach to study excitation energy, optical absorption spectrum and excited-state dynamics. Many-body Green's function theory uses self-energy operator to describe the exchange and correlation interactions among electrons and those between electron and hole. Here we give an overview of the fundamental concepts and principles of many-body Green's function theory, and a discussion on its applications in various materials. Contents
1 Introduction
2 GW method
2.1 One-particle Greens function
2.2 Hedins equations
2.3 GW approximation
2.4 Dielectric function
2.5 Quasiparticle correction
2.6 Applications
3 Bethe-Salpeter equation
3.1 Two-particle Greens function
3.2 Bethe-Salpeter equation
3.3 Tamm-Dancoff approximation and Random-phase approximation
3.4 Dynamical screening effect
3.5 Applications
4 Excited-state dynamics
4.1 BSE force
4.2 Combination of constrained densityfunctional theory and many-body Greensfunction theory
5 Conclusions and Outlook

中图分类号: 

()
[1] Hohenberg P, Kohn W. Phys. Rev., 1964, 136: B864-B871
[2] Kohn W, Sham L J. Phys. Rev., 1965, 140: A1133-A1138
[3] Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77: 3865-3868
[4] Van Schilfgaarde M, Kotani T, Faleev S. Phys. Rev. Lett., 2006, 96: art. no. 226402
[5] Onida G, Reining L, Rubio A. Rev. Mod. Phys., 2002, 74: 601-659
[6] Koopmans T. Physica, 1934, 1: 104-113
[7] Hedin L, Lundqvist S. Solid State Physics: Advances in Research and Application. NY: Academic Press, 1969. 23: 1-181
[8] Hedin L. Phys. Rev., 1965, 139: A796-A823
[9] Hybertsen M S, Louie S G. Phys. Rev. B, 1986, 34: 5390-5413
[10] Hybertsen M S, Louie S G. Phys. Rev. B, 1987, 35: 5585-5601
[11] Hybertsen M S, Louie S G. Phys. Rev. B, 1987, 35: 5602-5610
[12] Aulbur W G, Jönsson L, Wilkins J W. Solid State Physics: Advances in Research and Application. NY: Academic Press, 2000. 54: 1-218
[13] Aryasetiawan F, Gunnarsson O. Rep. Prog. Phys., 1998, 61: 237-312
[14] Rohlfing M, Krüger P, Pollmann J. Phys. Rev. B, 1993, 48: 17791-17805
[15] Rohlfing M, Krüger P, Pollmann J. Phys. Rev. B, 1995, 52: 1905-1917
[16] Spataru C D, Cazalilla M A, Rubio A, Benedict L X, Echenique P M, Louie S G. Phys. Rev. Lett., 2001, 87: art. no. 246405
[17] Godby R W, Schlüter M, Sham L J. Phys. Rev. B, 1988, 37: 10159-10175
[18] Shishkin M, Kresse G. Phys. Rev. B, 2006, 74: art. no. 035101
[19] Strinati G. Riv. Nuovo Cimento, 1988, 11: 1-86
[20] Strinati G. Phys. Rev. Lett., 1982, 49: 1519-1522
[21] Spataru C D, Ismail-Beigi S, Capaz R B, Louie S G. Phys. Rev. Lett., 2005, 95: art. no. 247402
[22] Strinati G. Phys. Rev. B, 1984, 29: 5718-5726
[23] Puschnig P, Ambrosch-Draxl C. Phys. Rev. B, 2002, 66: art. no. 165105
[24] Rohlfing M, Louie S G. Phys. Rev. B, 2000, 62: 4927-4944
[25] Tiago M L, Chelikowsky J R. Phys. Rev. B, 2006, 73: art. no. 205334
[26] Rödl C, Fuchs F, Fruthmüller J, Bechstedt F. Phys. Rev. B, 2008, 77: art. no. 184408
[27] Marini A, Hogan C, Grüning M, Varsano D. Comput. Phys. Commun., 2009, 180: 1392-1403
[28] Albrecht S, Reining L, Del Sole R, Onida G. Phys. Rev. Lett., 1998, 80: 4510-4513
[29] Shirley E L. Phys. Rev. Lett., 1998, 80: 794-797
[30] Benedict L X, Shirley E L, Bohn R B. Phys. Rev. B, 1998, 80: 4514-4517
[31] Rohlfing M, Louie S G. Phys. Rev. Lett., 1999, 82: 1959-1962
[32] Rohlfing M, Louie S G. Phys. Rev. Lett., 1998, 81: 2312-2315
[33] Rohlfing M, Louie S G. Phys. Rev. Lett., 1998, 80: 3320-3323
[34] van der Horst J W, Bobbert P A, Michels M A J, Brocks G, Kelly P J. Phys. Rev. Lett., 1999, 83: 4413-4416
[35] Kaczmarski M S, Ma Y C, Rohlfing M. Phys. Rev. B, 2010, 81: art. no. 115433
[36] Ismail-Beigi S, Louie S G. Phys. Rev. Lett., 2003, 90: art. no. 076401
[37] Ismail-Beigi S, Louie S G. Phys. Rev. Lett., 2005, 95: art. no. 156401
[38] Linderberg J, Öhrn Y. Propagator in Quantum Chemistry, Second Edition. Hoboken-New Jersey: John Wiley &Sons, Inc., 2004
[39] Von Niessen W, Schirmer J, Cederbaum L S. Comp. Phys. Rep., 1984, 1: 57-125
[40] Ortiz J V. J. Chem. Phys., 1988, 89: 6348-6352
[41] Zakrzewski V G, Ortiz J V. Int. J. Quant. Chem., 1995, 53: 583-590
[42] 徐光宪(Xu G X),黎乐民(Li L M),王德民(Wang D M),陈敏伯(Chen M B). 量子化学-基本原理和从头计算法(Quantum Chemistry-Basic Principles and Ib Inition Calcuation)(下册)(2nd ed.). 北京: 科学出版社(Science Press), 2008
[43] Schindlmayr A, Godby R W. Phys. Rev. Lett., 1998, 80: 1702-1705
[44] Marini A, Onida G, Del Sole R. Phys. Rev. Lett., 2001, 88: art. no. 016403
[45] Marini A, Del Sole R, Onida G. Phys. Rev. B, 2002, 66: art. no. 115101
[46] Marini A, Del Sole R, Rubio A, Onida G. Phys. Rev. B, 2002, 66: art. no. 161104(R)
[47] Yi Z J, Ma Y C, Rohlfing M, Silkin V M, Chulkov E V. Phys. Rev. B, 2010, 81: art. no. 125125
[48] Johnson D L. Phys. Rev. B, 1974, 9: 4475-4484
[49] von der Linden W, Horsch P. Phys. Rev. B, 1988, 37: 8351-8362
[50] Hott R. Phys. Rev. B, 1991, 44: 1057-1065
[51] Hybertsen M S, Louie S G. Phys. Rev. B, 1988, 37: 2733-2736
[52] Bechstedt F, Del Sole R, Cappellini G, Reining L. Solid State Commun., 1992, 84: 765-770
[53] Ma Y C, Rohlfing M. Phys. Rev. B, 2007, 75: art. no. 205114
[54] Rohlfing M, Krüger P, Pollmann J. Phys. Rev. Lett., 1995, 75: 3489-3492
[55] Rohlfing M, Krüger P, Pollmann J. Phys. Rev. B, 1998, 57: 6485-6492
[56] Hamann D R, Schlüter M, Chiang C. Phys. Rev. Lett., 1979, 43: 1494-1497
[57] Louie S G, Froyen S, Cohen M L. Phys. Rev. B, 1982, 26: 1738-1742
[58] Grossman J C, Rohlfing M, Mitas L, Louie S G, Cohen M L. Phys. Rev. Lett., 2001, 86: 472-475
[59] Faber C, Attaccalite C, Olevano V, Runge E, Blase X. Phys. Rev. B, 2011, 83: art. no. 115123
[60] Blase X, Attaccalite C, Olevano V. Phys. Rev. B, 2011, 83: art. no. 115103
[61] Ma Y C, Rohlfing M, Molteni C. Phys. Rev. B, 2009, 80: art. no. 241405(R)
[62] Papakonstantinou P. EPL, 2007, 78: art. no. 12001
[63] De Groot M, Buma W J, Gromov E V, Burghardt I, Köppel H, Cederbaum L S. J. Chem. Phys., 2006, 125: art. no. 204303
[64] González E M, Guidoni L, Molteni C. Phys. Chem. Chem. Phys., 2009, 11: 4556-4563
[65] De Groot M, Gromov E V, Köppel H, Buma W J. J. Phys. Chem. B, 2008, 112: 4427-4434
[66] Putschügl M, Zirak P, Penzkofer A. Chem. Phys., 2008, 343: 107-120
[67] Sergi A, Grüning M, Ferrario M, Buda F. J. Phys. Chem. B, 2001, 105: 4386-4391
[68] Ko C, Levine B, Toniolo A, Manohar L, Olsen S, Werner H J, Martínez T J. J. Am. Chem. Soc., 2003, 125: 12710-12711
[69] Nielsen I B, Boyé-Péronne S, El Ghazaly M O A, Kristensen M B, Nielsen S B, Andersen L H. Biophy. J., 2005, 89: 2597-2604
[70] Rocha-Rinza T, Christiansen O, Rajput J, Gopalan A, Rahbek D B, Andersen L H, Bochenkova A V, Granovsky A A, Bravaya K B, Nemukhin A V, Christiansen K L, Nielsen M B. J. Phys. Chem. A, 2009, 113: 9442-9449
[71] Nemukhin A V, Bochenkova A V, Bravaya K B, Granovsky A A. Proc. SPIE, 2007, 6449: art. no. 64490N
[72] Andersen L H, Bochenkova A V. Eur. Phys. J. D, 2009, 51: 5-14
[73] Molina V, Merchán M. Proc. Natl. Acad. Sci. USA, 2001, 98: 4299-4304
[74] Gromov E V, Burghardt I, Köppel H, Cederbaum L S. J. Am. Chem. Soc., 2007, 129: 6798-6806
[75] Nielsen S B, Lapierre A, Andersen J U, Pedersen U V, Tomita S, Andersen L H. Phys. Rev. Lett., 2001, 87: art. no. 228102
[76] Toniolo A, Olsen S, Manohar L, Martínez T J. Faraday Discuss., 2004, 127: 149-163
[77] Filippi C, Zaccheddu M, Buda F. J. Chem. Theory Comput., 2009, 5: 2074-2087
[78] Creemers T M H, Lock A J, Subramaniam V, Jovin T M, Völker S. Nat. Struct. Biol., 1999, 6: 557-560
[79] Lammich L, Åxman Pertersen M., Bröndsted Nielsen M, Andersen L H. Biophys. J., 2007, 92: 201-207
[80] Nielsen I B, Lammich L, Andersen L H. Phys. Rev. Lett., 2006, 96: art. no. 018304
[81] Andersen L H, Nielsen I B, Kristensen M B, El Ghazaly M O A, Haacke S, Nielsen M B, Petersen M Å. J. Am. Chem. Soc., 2005, 127: 12347-12350
[82] Sekharan S, Weingart O, Buss V. Biophys. J., 2006, 91: L07-L09
[83] Sun M T, Ding Y, Cui G L, Liu Y J. J. Phys. Chem. A, 2007, 111: 2946-2950
[84] Cembran A, González-Luque R, Altoè P, Merchán M, Bernardi F, Olivucci M, Garavelli M. J. Phys. Chem. A, 2005, 109: 6597-6605
[85] Bravaya K, Bochenkova A, Granovsky A, Nemukhin A. J. Am. Chem. Soc., 2007, 129: 13035-13042
[86] Send R, Sundholm D. Phys. Chem. Chem. Phys., 2007, 9: 2862-2867
[87] Ma Y, Rohlfing M, Molteni C. J. Chem. Theory Comput., 2010, 6: 257-265
[88] Baumeier B, Andrienko D, Ma Y, Rohlfing M. J. Chem. Theory Comput., 2012, 8: 997-1002
[89] Grüning M, Marini A, Gonze X. Nano Lett., 2009, 9: 2820-2824
[90] Runge E, Gross E K U. Phys. Rev. Lett., 1984, 52: 997-1000
[91] Hsu C P, Hirata S, Head-Gordon M. J. Phys. Chem. A, 2001, 105: 451-458
[92] Olovsson W, Tanaka I, Mizoguchi T, Puschnig P, Ambrosch-Draxl C. Phys. Rev. B, 2009, 79: art. no. 041102(R)
[93] Ankudinov A L, Nesvizhskii A I, Rehr J J. Phys. Rev. B, 2003, 67: art. no. 115120
[94] Rohlfing M, Pollmann J. Phys. Rev. B, 2001, 63: art. no. 125201
[95] Ma Y C, Rohlfing M, Gali A. Phys. Rev. B, 2010, 81: art. no. 041204(R)
[96] Hellmann H. Einfuhrung in die Quantumchemie. Leipzig: Franz Deuticke, 1937. p285
[97] Feynman R P. Phys. Rev., 1939, 56: 340-343
[98] Stanton J F, Gauss J, Ishikawa N, Head-Gordon M. J. Chem. Phys., 1995, 103: 4160-4174
[99] Liu J, Liang W Z. J. Chem. Phys., 2011, 134: art. no. 044114
[100] Liu J, Liang W Z. J. Chem. Phys., 2011, 135: art. no. 014113
[101] Liu J, Liang W Z. J. Chem. Phys., 2011, 135: art. no. 184111
[102] Ma Y C, Rohlfing M. Phys. Rev. B, 2008, 77: art. no. 115118
[103] Artacho E, Rohlfing M, Cté M, Haynes P D, Needs R J, Molteni C. Phys. Rev. Lett., 2004, 93: art. no. 116401
[104] Umari P, Stenuit G, Baroni S. Phys. Rev. B, 2010, 81: art. no. 115104
[105] Friedrich C, Blügel S, Schindlmayr A. Phys. Rev. B, 2010, 81: art. no. 125102
[106] Bruneval F, Gonze X. Phys. Rev. B, 2008, 78: art. no. 085125
[107] Reining L, Onida G, Godby R W. Phys. Rev. B, 1997, 56: R4301-R4304
[108] Rohlfing M. Phys. Rev. B, 2010, 82: art. no. 205127
[109] Shishkin M, Kresse G. Phys. Rev. B, 2007, 75: art. no. 235102
[110] Rostgaard C, Jacobsen K W, Thygesen K S. Phys. Rev. B, 2010, 81: art. no. 085103
[1] 张伟伟, 钟欣欣, 司玉冰, 赵仪*. Non-Condon电子转移速率理论与含时波包方法[J]. 化学进展, 2012, 24(06): 1166-1174.
[2] 贾建峰, 武海顺*. Ⅲ-Ⅴ族多面体团簇的稳定性规律[J]. 化学进展, 2012, 24(06): 1008-1022.
[3] 刘亚军*. 计算光化学[J]. 化学进展, 2012, 24(06): 950-956.
[4] 苏静, 李隽. 锕系化合物荧光光谱理论研究进展[J]. 化学进展, 2011, 23(7): 1329-1337.
[5] 丁万见,方维海. 光化学反应的从头算研究*[J]. 化学进展, 2007, 19(10): 1449-1459.
[6] 吕凤婷,高莉宁,房喻. 基于激发态分子内质子转移的新一代荧光探针*[J]. 化学进展, 2005, 17(05): 773-779.
[7] 李震宇 贺 伟 杨金龙. 密度泛函理论及其数值方法新进展*[J]. 化学进展, 2005, 17(02): 192-202.
[8] 戴瑛,黎乐民. 密度泛函理论处理激发态与多重态结构研究进展[J]. 化学进展, 2001, 13(03): 167-.
[9] 樊美公,于联合. 光反应中间体及高级激发态的光化学——分步双激光技术的应用研究*[J]. 化学进展, 1996, 8(02): 129-.
阅读次数
全文


摘要

研究激发态的多体格林函数理论