English
新闻公告
More
化学进展 2012, Vol. 24 Issue (06): 964-980 前一篇   后一篇

• 量子化学专辑 •

软X射线光谱的第一性原理模拟

花伟杰1, 高斌2, 罗毅*3   

  1. 1. Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm, Sweden;
    2. Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway;
    3. 中国科学技术大学国家同步辐射实验室及合肥微尺度物质科学国家实验室 合肥 230026
  • 收稿日期:2011-12-01 修回日期:2012-03-01 出版日期:2012-06-24 发布日期:2012-05-11
  • 通讯作者: 罗毅 E-mail:yiluo@ustc.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20925311)资助

First-Principle Simulation of Soft X-Ray Spectroscopy

Hua Weijie1, Gao Bin2, Luo Yi3   

  1. 1. Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm, Sweden;
    2. Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway;
    3. National Synchrotron Radiation Laboratory and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
  • Received:2011-12-01 Revised:2012-03-01 Online:2012-06-24 Published:2012-05-11
软X射线光谱是通过核激发或去激发以探测分子、表面及各种化合物的电子结构和化学结构的有效的测量技术。本文对基于密度泛函理论描述X射线吸收、发射的各种不同过程的计算方法进行了综述。重点讨论了各种方法的基本原理、实际操作和具体应用。提供了K边X射线光电子能谱、吸收和发射光谱详细的模拟细节以及一些代表性体系的算例(包括分子、富勒烯、碳纳米管、单层石墨和DNA链)。
Soft x-ray photon spectroscopy represents a category of instrumental techniques to effectively probe the electronic and chemical structure of molecules, surfaces, and a variety of complexes by core excitations or de-excitations. The basic computational methods, based on the density functional theory, for different absorption and emission processes are reviewed in this paper. Special attention has been paid to the practical implementations and applications of different methods. Details on the simulations of commonly used K-edge x-ray photoelectron, absorption, and emission spectra for a wide range of illustrative examples including molecules, fullerenes, carbon nanotubes, graphenes and DNA, are provided.

中图分类号: 

()
[1] Hohenberg P, Kohn W. Phys. Rev., 1964, 136: B864-B871
[2] Kohn W, Sham L J. Phys. Rev., 1965, 140: A1133-A1138
[3] Runge E, Gross E K U. Phys. Rev. Lett., 1984, 52: 997-1000
[4] Bethe H A, Salpeter E E. Phys. Rev., 1951, 82: 309-310
[5] Ankudinov A L, Ravel B, Rehr J J, Conradson S D. Phys. Rev. B, 1998, 58: 7565-7576
[6] Ankudinov A L, Rehr J J. Phys Rev. B, 2000, 62: 2437-2445
[7] http: //nobelprize. org
[8] Hergenhahn U J. Phys. B: At. Mol. Opt. Phys., 2004, 37: R89-R135
[9] Minkov I, Gel'Mukhanov F, Friedlein R, Osikowicz W, Suess C, Olhrwall G, Sorensen S L, Braun S, Murdey R, Salaneck W R, Ågren H. J. Chem. Phys., 2004, 121: 5733-5739
[10] Bagus P S. Phys. Rev., 1965, 139: A619-A634
[11] Triguero L, Plashkevych O, Pettersson L G M, Ågren H. J. Electron Spectrosc. Relat. Phenom., 1999, 104: 195-207
[12] Krause M O, Vestal M L, Johnston W H, Carlson T A. Phys. Rev., 1964, 133: A385-A390
[13] Gao B, Wu Z, Luo Y. J. Chem. Phys., 2008, 128: art. no. 234704
[14] Åberg T. Phys. Rev., 1964, 156: 35-41
[15] Manne R, Åberg T. Chem. Phys. Lett., 1970, 7: 282-284
[16] Ågren H, Carravetta V. Int. J. Quantum Chem., 1992, 42: 685-718
[17] Brena B, Luo Y, Nyberg M, Carniato S, Nilson K, Alfredsson Y, Åhlund J, Mårtensson N, Siegbahn H, Puglia C. Phys. Rev. B, 2004, 70: art. no. 195214
[18] Brena B, Carniato S, Luo Y. J. Chem. Phys., 2005, 122: art. no. 184316
[19] Martin R L, Shirley D A. J. Chem. Phys., 1976, 64: 3685-3689
[20] Carniato S, Luo Y. J. Electron Spectrosc. Relat. Phenom., 2005, 142: 163-171
[21] Triguero L, Plashkevych O, Pettersson L G M, Ågren H. J. Electron Spectrosc. Relat. Phenom., 1999, 104: 195-207
[22] Niwa Y, Kobayashi H, Tsuchiya T. J. Chem. Phys., 1974, 60: 799-807
[23] Ghosh A, Fitzgerald J, Gassman P G, Almlof J. Inorg. Chem., 1994, 33: 6057-6060
[24] Dufour G, Poncey C, Rochet F, Roulet H, Sacchi M, Santis M D, Crescenzi M D. Surf. Sci., 1994, 319: 251-266
[25] Ottaviano L, Nardo S D, Lozzi L, Passacantando M, Picozzi P, Santucci S. Surf. Sci., 1997, 373: 318-332
[26] Ottaviano L, Lozzi L, Ramondo F, Picozzi P, Santucci S. J. Electron Spectrosc. Relat. Phenom., 1999, 105: 145-154
[27] Peisert H, Knupfer M, Fink J. Surf. Sci., 2002, 515: 491-498
[28] Schwieger T, Peisert H, Golden M S, Knupfer M, Fink J. Phys. Rev. B, 2002, 66: art. no. 155207
[29] Stöhr J. NEXAFS Spectroscopy. Berlin Heidelberg, New York: Springer Verlag, 1992
[30] Simons J, Nichols J. Quantum Mechanics in Chemistry, 1st ed. Oxford University Press, USA, 1997
[31] Schatz G C, Ratner M A. Quantum Mechanics in Chemistry, 1st ed, Dover Publications, 2002
[32] Von Barth U, Grossman G. Solid State Commun., 1979, 32: 645-649
[33] Von Barth U, Grossmann G. Phys. Rev. B, 1982, 25: 5150-5179
0[34] Privalov T, Gel'mukhanov F, Ågren H. Phys. Rev. B, 2001, 64: art. no. 165115
[35] Privalov T, Gel'mukhanov F, Ågren H. Phys. Rev. B, 2001, 64: art. no. 165116
[36] Ågren H, Arneberg R. Phys. Scr., 1983, 28: 80-85
[37] Slater J C. Quantum Theory of Molecules and Solids. Mc Graw Hill, USA, 1974
[38] Slater J C. Adv. Quant. Chem., 1972, 6: 1-92
[39] Slater J C, Johnsson K H. Phys. Rev. B, 1972, 5: 844-853
[40] Slater J C, Johnsson K H. Phys. Rev. B, 1978, 18: 7165
[41] Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J H, Koseki S, Matsunaga N, Nguyen K A, Su S, Windus T L, Dupuis M, Montgomery J A Jr. J. Comput. Chem., 1993, 14: 1347-1363
[42] Kutzelnigg W, Fleischer U, Schindler M. NMR Basic Principles and Progress. Heidelberg: Springer Verlag, 1990, 23: 165
[43] Hermann K, Pettersson L G M, Casida M E, Daul C, Goursot A, Koester A, Proynov E, St-Amant A, Salahub D R, Carravetta V, Duarte H, Friedrich C, Godbout N, Guan J, Jamorski C, Leboeuf M, Leetmaa M, Nyberg M, Patchkovskii S, Pedocchi L, Sim F, Triguero L, Vela A. StoBe-deMon, version 3.0. 2007
[44] Hetényi B, Angelis F D, Giannozzi P, Car R. J. Chem. Phys. 2004, 120: 8632-8637
[45] Ågren H, Carravetta V, Vahtras O, Pettersson L G M. Chem. Phys. Lett., 1994, 222: 75-81
[46] Ågren H, Carravetta V, Pettersson L G M, Vahtras O. Physica B, 1995, 208/209: 477-480
[47] Hunt W J, Goddard W A Ⅲ. Chem. Phys. Lett., 1969, 3: 414-418
[48] Prendergast D, Galli G. Phys. Rev. Lett., 2006, 96: art. no. 215502
[49] Schwartz C P, Uejio J S, Duffin A M, England A H, Kelly D N, Prendergast D, Saykally R. J. Proc. Natl. Acad. Sci. U. S. A., 2010, 107: 14008-14013
[50] Schwartz C P, Saykally R J, Prendergast D. J. Chem. Phys., 2010, 133: art. no. 044507
[51] Uejio J S, Schwartz C P, Saykally R J, Prendergast D. Chem. Phys. Lett., 2008, 467: 195-199
[52] Schwartz C P, Uejio J S, Saykally R J, Prendergast D. J. Chem. Phys., 2009, 130: 184109
[53] Jolly W L, Hendrickson D N. J. Am. Chem. Soc., 1970, 92: 1863-1871
[54] Davis D W, Shirley D A. Chem. Phys. Lett., 1972, 15: 185-190
[55] Best P E. J. Chem. Phys., 1972, 49: 2797
[56] Plashkevych O, Privalov T, Ågren H, Carravetta V, Ruud K. Chem. Phys., 2000, 260: 11
[57] Brena B, Luo Y, Nyberg M, Carniato S, Nilson K, Alfredsson Y, Åhlund J, Mårtensson N, Siegbahn H, Puglia C. Phys. Rev. B, 2004, 70: art. no. 195214
[58] Nyberg M, Luo Y, Triguero L, Pettersson L G M, Ågren H. Phys. Rev. B, 1999, 60: 7956-7960
[59] Hua W, Yamane H, Gao B, Jiang J, Li S, Kato H S, Kawai M, Hatsui T, Luo Y, Kosugi N, Ågren H. J. Phys. Chem. B, 2010, 114: 7016-7021
[60] Gao B, Wu Z Y, Ågren H, Luo Y. J. Chem. Phys., 2009, 131: art. no. 034704
[61] Hua W, Gao B, Li S, Ågren H, Luo Y. Phys. Rev. B, 2010, 82: art. no. 155433
[62] Hua W, Gao B, Li S, Ågren H, Luo Y. J. Phys. Chem. B, 2010, 114: art. no. 13214
[63] Gao B, Jiang J, Liu K, Luo Y. BIONANO-LEGO, version 2.0. Royal Institute of Technology, Sweden, 2008
[64] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J. A. GAUSSIAN 03, revision D. 01. Gaussian, Inc. : Wallingford, CT, 2004
[65] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Jr Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. GAUSSIAN 09 revision A. 02. Wallingford CT: Gaussian Inc., 2009
[66] Triguero L, Pettersson L G M, Ågren H. Phys. Rev. B, 1998, 58: 8097-8110
[67] Leetmaa M, Ljungberg M P, Lyubartsev A, Nilsson A, Pettersson L G M. J. Electron Spectrosc. Relat. Phenom., 2010, 177: 135-157
[68] Langhoff P W. in Electron Molecule and Photon Molecule Collisions (Eds. Rescigno T N, McKoy B V, Schneider B). New York: Plenum, 1979: 183
[69] Casida M E, Daul C, Goursot A, Köster A M, Pettersson L G M, Proynov E, St-Amant A, Salahub D R. DEMON-KS Version 4.0 (deMon Software, 1997)
[70] Nyberg M, Luo Y, Triguero L, Pettersson L G M, Ågren H. Phys. Rev. B, 1999, 60: 7956-7960
[71] Maxwell A, Brühwiler P, Arvanitis D, Hasselström J, Mårtensson N. Chem. Phys. Lett., 1996, 260: 71-77
[72] Brühwiler P A, Maxwell A J, Rudolf P, Gutleben C D, Wstberg B, Mårtensson N. Phys. Rev. Lett., 1993, 71: 3721-3724
[73] Gao B, Wu Z, Ågren H, Luo Y. J. Comp. Phys., 2009, art. no. 131: 034704
[74] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666-669
[75] Lee C, Wei X, Kysar J W, Hone J. Science, 2008, 321: 385-388
[76] Kane C L, Mele E J. Phys. Rev. Lett., 2005, 95: art. no. 226801
[77] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Nature, 2005, 438: 197-200
[78] Wang X, Zhi L, Müllen K. Nano Lett., 2008, 8: 323-327
[79] Pacilé D, Papagno M, Rodríguez A F, Grioni M, Papagno L, Girit Ö, Meyer J C, Begtrup G E, Zettl A. Phys. Rev. Lett., 2008, 101: art. no. 066806
[80] Jeong H K, Noh H J, Kim J Y, Colakerol L, Glans P A, Jin M H, Smith K E, Lee Y H. Phys. Rev. Lett., 2009, 102: 099701
[81] Pacilé D, Papagno M, Rodríguez A F, Grioni M, Papagno L, Giri t Ö, Meyer J C, Begtrup G E, Zettl A. Phys. Rev. Lett., 2009, 102: art. no. 099702
[82] Stone A J, Wales D J. Chem. Phys. Lett., 1986, 128: 501-503
[83] Schultz B J, Patridge C J, Lee V, Jaye C, Lysaght P S, Smith C, Barnett J, Fischer D A, Prendergast D, Banerjee S. Nat Commun, 2011, 2: art. no. 372
[84] Corney A. Atomic and Laser Spectroscopy. New York: Oxford University Press, 1977
[85] Ågren H, Arneberg R, Muller J, Manne R. Chem. Phys., 1984, 83: 53-67
[86] Ågren H, Carravetta V, Vahtras O, Pettersson L G M. Theor. Chem. Acc., 1997, 97: 14-40
[87] Kirtley S M, Mullins O C, Chen J, van Elp J, George S J, Chen C, O'Halloran T, Cramer S P. Biochim. Biophys. Acta, 1992, 1132: 249-254
[88] MacNaughton J B, Moewes A, Lee J S, Wettig S D, Kraatz H, Ouyang L Z, Ching W Y, Kurmaev E Z. J. Phys. Chem. B, 2006, 110: 15742-15748
[89] MacNaughton J B, Kurmaev E Z, Finkelstein L D, Lee J S, Wettig S D, Moewes A. Phys. Rev. B, 2006, 73: art. no. 205114
[90] Kato H S, Furukawa M, Kawai M, Taniguchi M, Kawai T, Hatsui T, Kosugi N. Phys. Rev. Lett., 2004, 93: art. no. 086403
[91] Furukawa M, Kato H S, Taniguchi M, Kawai T, Hatsui T, Kosugi N, Yoshida T, Aida M, Kawai M. Phys. Rev. B, 2007, 75: art. no. 045119-9
[92] MacNaughton J, Moewes A, Kurmaev E Z. J. Phys. Chem. B, 2005, 109: 7749-7757
[93] Harada Y, Takeuchi T, Kino H, Fukushima A, Takakura K, Hieda K, Nakao A, Shin S, Fukuyama H. J. Phys. Chem. A, 2006, 110: 13227-13231
[94] Ekström U, Norman P, Carravetta V, Ågren H. Phys. Rev. Lett., 2006, 97: 143001
[95] Healion D M, Schweigert I V, Mukamel S. J. Phys. Chem. A, 2008, 112: 11449-11461
[96] Hitchcock A P, Tronc M, Modelli A. J. Phys. Chem., 1989, 93: 3068-3077
[97] Jordan-Sweet J L, Kovac C A, Goldberg M J, Morar J F. J. Chem. Phys., 1988, 89: 2482-2489
[98] Pettersson L G M, Ågren H, Schurmann B L, Lippitz A, Unger W E S. Int. J. Quant. Chem., 1977, 63: 749-765
[99] Plashkevych O, Yang L, Vahtras O, Ågren H, Petterson L G M. Chem. Phys., 1997, 222: 125 - 137
[100] Jiang J, Liu K, Lu W, Luo Y. J. Chem. Phys., 2006, 124: 214711
[101] Gao B, Jiang J, Liu K, Wu Z Y, Lu W, Luo Y. J. Comput. Chem., 2008, 29: 434-444
[102] Gao B, Jiang J, Wu Z, Luo Y. J. Comp. Phys. 2008, 128: 084707
[103] Cooper G, Sze K H, Brion C E. J. Am. Chem. Soc., 1989: 111: 5051-5058
[104] Ishii I, McLaren R, Hitchcock A P, Jordan K D, Choi Y, Robin M B, Can J. Chem., 1988, 66: 2104-2121
[105] Kay R B, van der Leeuw P E, van der Wiel M J. J. Phys B: At. Mol. Phys., 1977, 10: 2513-2519
[106] Hellwege K L. Landolt-Börnstein Numerical Data and Functional Relationship in Science and Technology, New Series, Group II. Berlin: Springer, 1976
[107] Madelung O. Landolt-Börnstein Numerical Data and Functional Relationship in Science and Technology, New Series, Group II: Berlin: Springer, 1992
[108] Hitchcock A P, Brion C E. J. Electron Spectrosc. Rel. Phen., 1979, 15: 201-206
[109] Hitchcock A P, Brion C E. J. Electron Spectrosc. Rel. Phen., 1977, 10: 317-330
[110] Hövel S, Kolczewski C, Wühn M, Albers J, Weiss K, Wöll C. J. Chem. Phys., 2000, 112: 3909-3916
[111] Luo Y, Ågren H, Gel'mukhanov F, Guo J, Skytt P, Wassdahl N, Nordgren J. Phys. Rev. B, 1995, 52: 14479-14496
[1] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[2] 孔龙娟, 李晖*. 衬底调制下的硼墨烯、硅烯、锗烯等单元素二维材料的原子与电子结构[J]. 化学进展, 2017, 29(4): 337-347.
[3] 郄佳, 李明, 刘利, 梁英华, 崔文权*. g-C3N4光催化材料的第一性原理研究[J]. 化学进展, 2016, 28(10): 1569-1577.
[4] 徐宇虹,尹鸽平,左朋建. 锂离子电池正极材料的第一性原理研究进展[J]. 化学进展, 2008, 20(11): 1827-1833.
[5] 李震宇 贺 伟 杨金龙. 密度泛函理论及其数值方法新进展*[J]. 化学进展, 2005, 17(02): 192-202.
阅读次数
全文


摘要

软X射线光谱的第一性原理模拟