English
新闻公告
More
化学进展 2012, Vol. 24 Issue (06): 928-949 前一篇   后一篇

• 量子化学专辑 •

无辐射跃迁理论进展

牛英利1, 林至闓2, 杨玲3, 于建国4, 何荣幸5, 庞然6, 朱超原*2, 林倫年7, 林聖賢2   

  1. 1. 中国科学院化学研究所有机固体重点实验室 北京 100190;
    2. 西北大学现代物理研究所 西安 710069;
    3. 哈尔滨工业大学基础与交叉科学研究院理论与模拟化学研究所 哈尔滨 150080;
    4. 北京师范大学化学学院 北京 10087;
    5. 西南大学化学化工学院 重庆 400715;
    6. 厦门大学化学化工学院固体表面物理化学国家重点实验室 厦门 361005;
    7. 东北大学理学院化学系 仙台 日本 980
  • 收稿日期:2012-02-01 修回日期:2012-04-01 出版日期:2012-06-24 发布日期:2012-05-11
  • 通讯作者: 朱超原 E-mail:cyzhu@mail.nctu.edu.tw

Recent Developments in Radiationless Transitions

Niu Yingli1, Lin Chinkai2, Yang Ling3, Yu Jianguo4, He Rongxing5, Pang Ran6, Zhu Chaoyuan2, Hayashi Michitoshi7, Lin Sheng Hsien2   

  1. 1. Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. Institute of Modern Physics, Northwest University, Xian 710069, China;
    3. Institute of Theoretical and Simulation Chemistry, Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150080 China;
    4. Department of Chemistry, Beijing Normal University, Beijing 10087;
    5. College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China;
    6. State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering and Xiamen University, Xiamen, 361005, Fujian, China;
    7. Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980, Japan
  • Received:2012-02-01 Revised:2012-04-01 Online:2012-06-24 Published:2012-05-11
在本文中,我们将介绍运用第一性原理计算包含非谐效应或势能面锥形交叉情况下内转换速率的最新工作。我们同时计算了包含非谐效应的分子吸收和发射光谱,以检验量子化学方法计算得到势能面的准确性。势能面的锥形交叉对内转换过程的影响是学界广泛关注的焦点。本文将介绍如何在内转换速率计算的过程中考虑势能面锥形交叉的影响,并将之运用于吡嗪分子。本文运用绝热近似理论处理了另外一个重要的无辐射过程,分子的振动驰豫过程,并将这个理论应用于水二聚体和苯胺的振动弛豫速率的计算。
In this paper, we will introduce recent works on the mathematical treatments and the first-principle calculations concerning the internal conversion rates for the cases with anharmonic potentials, and conical intersecting potentials. The simulations of absorption and emission spectra with anharmonic effects are also presented to check the validity of the potential energy surfaces obtained from the quantum chemical calculations. The effect of conical intersection on internal conversion has attracted considerable attention. In this paper a different approach will be proposed and applied to pyrazine. Another important non-radiative process, molecular vibrational relaxation, is also treated by applying the adiabatic approximation to the ab initio anharmonic potential energy surfaces in this paper. The vibrational relaxation rates in water dimer and aniline are chosen to demonstrate the calculation.

中图分类号: 

()
[1] Lin S H. J. Chem. Phys., 1966, 4410): 3759-3767
[2] Englman R, Jortner J. Mol. Phys., 1970, 182): 145-164
[3] Freed F, Jortner J. J. Chem. Phys., 1970, 5212): 6272-6291
[4] Nitzan A, Jortner J. J. Chem. Phys., 1971, 553): 1355-1368
[5] Siebrand W. J. Chem. Phys., 1971, 541): 363-367
[6] Fischer S. Chem. Phys. Lett., 1971, 115): 577-582
[7] Lin S H, Bersohn R. J. Chem. Phys., 1968, 486): 2732-2736
[8] Henry B R, asha M. Annu. Rev. Phys. Chem., 1968, 191): 161-192
[9] Huang , Rhys A. Proc. R. Soc. Lond. A., 1950, 204: 406-423
[10] Huang . Contemp. Phys., 1981, 226): 599-612
[11] Duschinsky F. Acta Physicochim. USSR)., 1937, 7: 551
[12] Hayashi M, Mebel A M, Liang , Lin S H. J. Chem. Phys., 1998, 1085): 2044-2055
[13] Mebel A M, Hayashi M, Liang , Lin S H. J. Phys. Chem. A., 1999, 10350): 10674-10690
[14] Peng Q, Yi Y, Shuai , Shao J. J. Chem. Phys., 2007, 126: art. no. 114302
[15] Peng Q, Yi Y, Shuai , Shao J. J. Am. Chem. Soc., 2007, 129: 9333-9339
[16] Niu Y, Peng Q, Shuai . Sci. China Ser. B-Chem., 2008, 5112): 1153-1158
[17] Tang J, Lee M T, Lin S H. J. Chem. Phys., 2003, 11914): 7188-7196
[18] Islampour R, Miralinaghi M. J. Phys. Chem. A., 2007, 11138): 9454-9462
[19] Islampour R, Miralinaghi M. J. Phys. Chem. A., 2009, 11311): 2340-2349
[20] Pople J A, Sidman J W. J. Chem. Phys., 1957, 276): 1270-1277
[21] Robinson G W, Digiorgio V E. Can. J. Chem., 1958, 361): 31-38
[22] Callomon J H, Innes . J. Mol. Spectrosc., 1963, 101/6): 166-181
[23] Job V A, Sethuraman V, Innes . J. Mol. Spectrosc., 1969, 301/3): 365-426
[24] Moule D C, Walsh A D. Chem. Rev., 1975, 751): 67-84
[25] Miller R G, Lee E C. J. Chem. Phys., 1978, 6810): 4448-4464
[26] Strickler S J, Barnhart R J. J. Phys. Chem., 1982, 864): 448-455
[27] Jensen P, Bunker P R. J. Mol. Spectrosc., 1982, 941): 114-125
[28] Clouthier D J, Ramsay D A. Ann. Rev. Phys. Chem., 1983, 341): 31-58
[29] Reisner D E, Field R W, insey J L, Dai H. J. Chem. Phys., 1984, 8012): 5968-5978
[30] Lin C , Chang H C, Lin S H. J. Phys. Chem. A., 2007, 11138): 9347-9354
[31] Coon J B, Naugle N W, Mckenzie R D. J. Mol. Spectrosc., 1966, 202): 107-129
[32] Lin S H, Eyring H. Proc. Nat. Acad. Sci. USA., 1974, 719): 3415-3417
[33] Lin S H. Proc. R. Soc. Lond. A., 1976, 352 1668): 57-71
[34] Lin S H, Fujimura Y, Neusser H J, Schlag E W. Multiphoton Spectroscopy of Molecules. New York: Academic Press, 1984
[35] Yeung E S, Moore C B. J. Chem. Phys., 1973, 589): 3988-3998
[36] Miller R G, Lee E C. Chem. Phys. Lett., 1975, 331): 104-107
[37] Miller R G, Lee E C. Chem. Phys. Lett., 1976, 411): 52-54
[38] Yeung E S, Moore C B. J. Chem. Phys., 1974, 605): 2139-2147
[39] Tang Y, Fairchild P W, Lee E C. J. Chem. Phys., 1977, 667): 3303-3305
[40] Liang , Chang R, Hayashi M, Lin S H. Principle of Molecular Spectroscopy and Photochemistry. Taichung: National Chung Hsing University Press, 2001
[41] Lin C, Li M, Yamaki M, Hayashi M, Lin S H. Phys. Chem. Chem. Phys., 2010, 1237): 11432-11444
[42] hu C, Liang , Hayashi M, Lin S H. Chem. Phys., 2009, 3581/2): 137-146
[43] Wang H, hu C, Yu J, Lin S H. J. Phys. Chem. A., 2009, 11352): 14407-14414
[44] Villa E, Amirav A, Lim E C. J. Phys. Chem., 1988, 9219): 5393-5397
[45] Mochizuki Y, aya , Ito M. J. Chem. Phys., 1978, 692): 935-936
[46] Yang L, hu C Y, Yu J G, Lin S H. Chem. Phys., to be published).
[47] Da Silva F F, Almeida D, Martins G, Milosavljevic A R, Marinkovic B P, Hoffmann S V, Mason N J, Nunes Y, Garcia G, Limao-Vieira P. Phys. Chem. Chem. Phys., 2010, 1225)
[48] night A E W, Lawburgh C M, Parmenter C S. J. Chem. Phys., 1975, 6310): 4336-4351
[49] Butler P, Moss D B, Yin H, Schmidt T W, able S H. J. Chem. Phys., 2007, 1279): 94303
[50] Lin S H. J. Chem. Phys., 1973, 5812): 5760-5768
[51] Werner H J, nowles P J, Lindh R, Manby F R, Celani P, orona T, Rauhut G, Amos R D, Bernhardsson A, Berning A, Cooper D L, Dobbyn A J, Eckert F, Hampel C, Hetzer G, Lloyd A W, Mcnicholas S J, Meyer W, Mura M E, Nicklaβ A, Palmieri P, Pitzer R, Schumann U, Stoll H, Tarroni R, Thorsteinsson T. Molpro. 2006
[52] Abramson A S, Spears G, Rice S A. J. Chem. Phys., 1972, 565): 2291-2308
[53] He R X, Yang L, hu C Y, Yamaki M, Lee Y P, Lin S H. J. Chem. Phys., 2011, 1349): 94313
[54] Seidner L, Stock G, Sobolewski A L, Domcke W. J. Chem. Phys., 1992, 967): 5298-5309
[55] Woywod C, Domcke W, Sobolewski A L, Werner H. J. Chem. Phys., 1994, 1002): 1400-1413
[56] Seel M, Domcke W. J. Chem. Phys., 1991, 9511): 7806-7822
[57] Suzuki Y, Fuji T, Horio T, Suzuki T. J. Chem. Phys., 2010, 13217): 174302
[58] Werner U, Mitric R, Suzuki T, Bonacic-outeck V. Chem. Phys., 2008, 3491-3): 319-324
[59] Innes , Ross I G, Moomaw W R. J. Mol. Spectrosc., 1988, 1322): 492-544
[60] Lin C , Niu Y L, hu C Y, Shuai G, Lin S H. Chem. Asian J., 2011, 611): 2977-2985
[61] Laubereau A, aiser W. Rev. Mod. Phys., 1978, 503): 607-665
[62] Nesbitt D J, Field R W. J. Phys. Chem., 1996, 10031): 12735-12756
[63] Voth G A, Hochstrasser R M. J. Phys. Chem., 1996, 10031): 13034-13049
[64] Barone V. J. Chem. Phys., 2005, 1221): 14108
[65] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, heng G, Sonnenberg J L, Hada M, Ehara M, Toyota , Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, itao O, Nakai H, Vreven T, Montgomery J J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, udin N, Staroverov V N, obayashi R, Normand J, Raghavachari , Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam N J, lene M, nox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma , akrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian 09. Gaussian, Inc.
[66] Yanai T, Tew D P, Handy N C. Chem. Phys. Lett., 2004, 3931/3): 51-57
[67] Huang S, Miller R E. J. Chem. Phys., 1989, 9111): 6613-6631
[68] Yamada Y, Okano J, Mikami N, Ebata T. Chem. Phys. Lett., 2006, 4324-6): 421-425
[69] Yamada Y, Okano J, Mikami N, Ebata T. J. Chem. Phys., 2005, 12312): 124316
[70] Ebata T, Minejima C, Mikami N. J. Phys. Chem. A., 2002, 10646): 11070-11074
[71] Hutchinson J S, Reinhardt W P, Hynes J T. J. Chem. Phys., 1983, 799): 4247-4260
[72] Ebata T, ayano M, Sato S, Mikami N. J. Phys. Chem. A., 2001, 10538): 8623-8628
[1] 李鹏, 孙彦平* . 非水系二次锂-氧电池正极[J]. 化学进展, 2012, 24(12): 2457-2471.
[2] 张栋, 张存中*, 穆道斌, 吴伯荣, 吴锋 . 锂空气电池研究述评[J]. 化学进展, 2012, 24(12): 2472-2482.
[3] 王洒洒, 孙辉, 陈胜洁, 尤洪星, 刘晔* . 过渡金属酸盐在催化反应中的应用[J]. 化学进展, 2012, 24(12): 2287-2298.
[4] 王会香, 姜东, 吴东, 李德宝, 孙予罕 . TiO2光催化还原CO2[J]. 化学进展, 2012, 24(11): 2116-2123.
[5] 周天辰, 何川, 张亚男, 赵国华*. CO2的光电催化还原[J]. 化学进展, 2012, (10): 1897-1905.
[6] 王莉, 敖先权*, 王诗瀚. 甲烷与二氧化碳催化重整制取合成气催化剂[J]. 化学进展, 2012, (9): 1696-1706.
[7] 李孟丽, 杨晓龙*, 唐立平, 熊绪茂, 任嗣利, 胡斌*. N2O的催化分解研究[J]. 化学进展, 2012, (9): 1801-1817.
[8] 卢学毅, 廖世军, 宋慧宇*. 高活性、高抗毒性的甲酸燃料电池阳极催化剂[J]. 化学进展, 2012, 24(08): 1437-1446.
[9] 张俊, 陈婧, 黄新松, 李广社*. CO催化氧化用纳米材料及其最新研究成果[J]. 化学进展, 2012, 24(07): 1245-1251.
[10] 尹海亮, 周同娜, 柴永明, 柳云骐, 刘晨光*. 分子筛在加氢脱硫催化剂深度脱硫方面的应用[J]. 化学进展, 2012, 24(07): 1252-1261.
[11] 陈立峰, 史静, 张亚红, 唐颐*. 核壳型沸石复合材料和反应器[J]. 化学进展, 2012, 24(07): 1262-1269.
[12] 陈兆旭*, 黄玉成, 何翔. Pd/ZnO催化甲醇水蒸气重整理论研究[J]. 化学进展, 2012, 24(06): 873-878.
[13] 刘福东, 单文坡, 石晓燕, 贺泓. 用于NH3选择性催化还原NOx的钒基催化剂[J]. 化学进展, 2012, 24(04): 445-455.
[14] 胡磊, 孙勇, 林鹿. 离子液体介导制备5-羟甲基糠醛[J]. 化学进展, 2012, 24(04): 483-491.
[15] 汪玉娟, 徐杰, 尹国川. 均相催化氧化中的活性中间体多样性[J]. 化学进展, 2012, 24(0203): 203-211.
阅读次数
全文


摘要

无辐射跃迁理论进展