English
新闻公告
More
化学进展 2012, Vol. 24 Issue (06): 910-927 前一篇   后一篇

• 量子化学专辑 •

带隙问题:第一性原理电子能带理论研究现状

蒋鸿*   

  1. 北京分子科学国家实验室稀土材料化学和应用国家重点实验室 理论与计算化学研究所 北京大学化学与分子工程学院 北京 100871
  • 收稿日期:2012-01-01 修回日期:2012-03-01 出版日期:2012-06-24 发布日期:2012-05-11
  • 通讯作者: 蒋鸿 E-mail:h.jiang@pku.edu.cn
  • 基金资助:

    国家自然科学基金面上资助项目(No.20973009,No.21173005)

The Band Gap Problem: the State of the Art of First-Principles Electronic Band Structure Theory

Jiang Hong   

  1. Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received:2012-01-01 Revised:2012-03-01 Online:2012-06-24 Published:2012-05-11
电子能带结构是材料最基本的性质之一,对于材料的实际应用具有深刻影响。电子能带结构的理论描述一直以来都是第一性原理理论方法中最具挑战性的问题之一。作为材料理论计算“标准模型”的密度泛函理论,在局域密度近似或广义梯度近似下,存在着著名的“带隙问题”:半导体材料的理论带隙与实验值相比存在着显著的系统性误差。近年来,以改进对带隙的描述为主要目标之一,密度泛函理论领域有很多重要发展。同时,对于带隙问题,与密度泛函理论紧密相关但又有本质区别的另外一类理论方法是基于格林函数的第一性原理多体微扰理论,其中最为流行的GW方法是当前描述材料的电子能带结构最为准确的第一性原理方法,但一直以来都受限于计算量太大而无法应用于更复杂的体系。本文综述了密度泛函理论和格林函数多体理论在电子能带结构问题上的基本原理、最新进展以及存在的挑战性问题。希望通过比较两种理论框架的异同,为未来可能的发展思路提供启发。
Electronic band structure is one of the most fundamental properties of a material that plays a crucial role in many important applications, and its accurate description has been a long-standing challenge for the first-principles electronic structure theory. Kohn-Sham Density-functional theory (KS-DFT) within local density or generalized-gradient approximations (LDA/GGA), currently the “standard model” for first-principles computational materials science, suffers from the well-known band gap problem. A lot of efforts have been invested to improve the description of band gaps within the framework of Kohn-Sham DFT or its generalized formalisms. On the other hand, many-body perturbation theory (MBPT) based on Green's function G (GF) provides a different and conceptually more rigorous framework for electronic band structure. The central ingredient of the GF-based MBPT is the exchange-correlation self-energy xc, which can be formally obtained by solving a set of complicated integro-differential equations, named Hedin's equations. The GW approximation, in which xc is simply a product of G and the screened Coulomb interaction (W), is currently the most accurate first-principles approach to describe electronic band properties of extended systems. Compared to LDA/GGA, the computational efforts required for GW calculations are much heavier, so that its applications have been limited to relatively small systems. In this work, we review the basic principles, latest developments, and remaining challenges of first-principles electronic band structure theory from both DFT and GF-based MBPT perspectives. It is hoped that new ideas on further developments can be obtained by setting up the connection between the two different theoretical frameworks. Contents
1 Introduction:Electronic band structures and the band gap problem
1.1 Experimental measurements of electronic band structures
1.2 Theoretical treatments of electronic band structures and the band gap problem
2 Electronic band structures frommean-field approaches
2.1 Hartree theory
2.2 Hartree-Fock theory
3 Electronic band structures from density functional theory
3.1 Density functional theory and Kohn-Sham equations
3.2 The band gap problem and its origin
3.3 The optimized effective potential and related methods
3.4 Generalized Kohn-Sham methods
4 Electronic band structures from Green's function based many-body perturbation theory
4.1 Green's function
4.2 Self-energy and quasi-particle equations
4.3 Hedin's equations and GW approximation
4.4 The G0W0 approach and self-consistency
5 Concluding remarks

中图分类号: 

()
[1] Yu P Y, Cardona M. Fundamentals of semiconductors: physics and materials properties (3rd ed) Berlin: Springer, 2001
[2] Huefner S. Photoelectron Spectroscopy: Prinples and Applications (3rd ed. ) Berlin: Springer, 2003
[3] Hedin L, Lundqvist B I. Solid State Phys., 1969, 23: 1
[4] Godby R W, Garcia-Gonzalez P. In A Primer in Density Functional Theory (Eds Fiohais C, Nogueira F, Marques M), Berlin Heidelberg: Springer-Verlag, 2003
[5] Parr R G, Yang W. Density-Functional Theory of Atoms and Molecules; New York: Oxford University Press, 1989
[6] Dreizler R M, Gross E K U. Density Functional Theory: An Approach to the Quantum Many-Body Problem, Berlin: Springer-Verlag, 1990
[7] Jones R O, Gunnarsson O. Rev. Mod. Phys., 1989, 61: 689-746
[8] Kohn W, Sham L J. Phys. Rev. A, 1965, 140: 1133
[9] Martin R M. Electronic Structure: Basic Theory and Practical Methods, Cambridge: Cambridge University Press, UK, 2004
[10] Aryasetiawan F, Gunnarsson O. Rep. Prog. Phys., 1998, 61: 237-312
[11] Seidl M, Goerling A, Vogl P, Majewski J A, Levy M. J. Chem. Phys., 1996, 53: 3764-3774
[12] Kummel S, Kronik L. Rev. Mod. Phys., 2008, 80: 3-60
[13] Becke A D. J. Chem. Phys., 1993, 98: 1372
[14] Bylander D M, Kleinman L. Phys. Rev. B, 1990, 41: 7868-7871
[15] Fetter A L., Walecka J D. Quantum theory of many-particle systems, New York: McGraw-Hill, 1971
[16] Aulbur W G, Joensson L, Wilkins J W. Solid State Phys., 2000, 54: 1-218
[17] Hedin, L. Phys. Rev., 1965, 139: A796
[18] 蒋鸿(Jiang H). 物理化学学报(Acta. Phys. Chim. Sin. ), 2010, 26: 1017-1033
[19] Hybertsen M S, Louie S G. Phys. Rev. B, 1986, 34: 5390-5413
[20] Onida G, Reining, L., Rubio, A. Rev. Mod. Phys., 2002, 74: 601-659
[21] Aryasetiawan F. In Strong Coulomb Correlations in Electronic Structure Calculations: Beyond the Local Density Approximation (Ed. Anisimov V I), Gordon and Breach Science Publishers, 2000
[22] Kotani T, van Schilfgaarde M, Faleev S V. Phys. Rev. B, 2007, 76: art. no. 165106
[23] Sham L J, Kohn W. Phys. Rev., 1966, 145: 561-567
[24] Niquet Y M, Gonze X. Phys. Rev. B, 2004, 70: art. no. 245115
[25] Kohn W. Rev. Mod. Phys., 1999, 71: 1253-1266
[26] Inkson J C. Many-body theory of solids: An Introduction; New York: Plenum, 1983
[27] Shavitt I, Bartlett R J. Many-body methods in chemistry and physics; Cambridge: Cambridge University Press, 2009
[28] Slater J C. Phys. Rev., 1953, 91: 528-530
[29] Hohenberg P, Kohn W. Phys. Rev. B, 1964, 136: 864
[30] Levy M. Phys. Rev. A, 1982, 26: 1200-1208
[31] Perdew J P, Kurth S. In A Primer in Density Functional Theory (Eds. Fiohais C, Nogueira F, Marques M), Verlag Berlin Heidelberg: Springer, 2003, 1-55
[32] Perdew J P, Parr R G, Levy M, Balduz J L. Phys. Rev. Lett., 1982, 49: 1691-1694
[33] Perdew J P, Levy M. Phys. Rev. Lett., 1983, 51: 1884-1887
[34] Sham L J, Schlüter M. Phys. Rev. Lett., 1983, 51: 1888-1891
[35] Sharp R T, Horton G K. Phys. Rev., 1953, 90: 317
[36] Talman J D, Shadwick W F. Phys. Rev. A, 1976, 14: 36-40
[37] Slater J C, Statz H, Koster G F. Phys. Rev., 1953, 91: 205-205
[38] Sahni V, Gruenebaum J, Perdew J P. Phys. Rev. B, 1982, 26: 4371-4377
[39] Engel E. In A Primer in Density Functional Theory, 2003, 620: 56-122
[40] Gorling A, Levy M. Phys. Rev. B, 1993, 47: 13105-13113
[41] Jiang H, Engel E. J. Chem. Phys., 2005, 123: art. no. 224102
[42] Gorling A, Levy M. Phys. Rev. A, 1994, 50: 196-204
[43] Yang W, Wu Q. Phys. Rev. Lett., 2002, 89: art. no. 143002
[44] Kummel S, Perdew J. P. Phys. Rev. B, 2003, 68: art. no. 035103
[45] Kümmel S, Kronik L. Rev. Mod. Phys., 2008, 80: 3-60
[46] Stadele M, Majewski J A, Vogl P, Gorling A. Phys. Rev. Lett., 1997, 79: 2089-2092
[47] Stadele M, Moukara M, Majewski J A., Vogl P, Gorling A. Phys. Rev. B, 1999, 59: 10031-10043
[48] Godby R W, Garcia-Conzalez P. Lect. Notes Phys., 2003, 620: 185-217
[49] Magers D H, Lipscomb, W. N., Bartlett, R. J., Stanton, J. F. J. Chem. Phys., 1989, 91: 1945-1947
[50] Bylander D M, Kleinman L. Phys. Rev. B, 1995, 52: 14566-14570
[51] Becke A D, Johnson E R. J. Chem. Phys., 2006, 124: art. no. 221101
[52] Tran F, Blaha P. Phys. Rev. Lett., 2009, 102: 246401
[53] Becke A D, Roussel M R. Phys. Rev. A, 1989, 39: 3761-3767
[54] Tran F, Blaha P, Schwarz K. J. Phys. Condens. Mat., 2007, 19: art. no. 196208
[55] Singh D. J. Phys. Rev. B, 2010, 82: art. no. 205102
[56] Koller D, Tran F, Blaha P. Phys. Rev. B, 2011, 83: 195134
[57] Becke A D. J. Chem. Phys., 1993, 98: 5648-5652
[58] Becke A D. J. Chem. Phys., 1993, 98: 1372-1377
[59] Bylander D M, Kleinman L. Phys. Rev. B, 1990, 41: 7868-7871
[60] Seidl A, Gorling A, Vogl P, Majewski J A, Levy M. Phys. Rev. B, 1996, 53: 3764-3774
[61] Levy M P. Natl. Acad. Sci. USA, 1979, 76: 6062-6065
[62] Seidl M, Elsaesser M S, Winkel K, Zifferer G, Mayer E, Loerting, T. Phys. Rev. B, 2011, 83
[63] Baer R, Livshits E, Salzner U. Ann. Rev. Phys. Chem., 2010, 61: 85-109
[64] Lee C, Yang W, Parr R G. Phys. Rev. B, 1988, 37: art. no. 785
[65] Burke K, Ernzerhof M, Perdew J P. Chem. Phys. Lett., 1997, 265: 115-120
[66] Zhang I Y, Xu X. Int. Rev. Phys. Chem., 2011, 30: 115-160
[67] Heyd J, Scuseria G E, Ernzerhof M. J. Chem. Phys., 2003, 118: 8207-8215
[68] Heyd J, Scuseria G E, Ernzerhof M. J. Chem. Phys., 2003, 118: art. no. 8207
[69] Henderson T M, Paier J, Scuseria G E. Phys. Status Solidi B, 2011, 248: 767-774
[70] Leininger T, Stoll H, Werner H J, Savin A. Chem. Phys. Lett., 1997, 275: 151-160
[71] Baer R, Neuhauser D. Phys. Rev. Lett., 2005, 94: art. no. 043002
[72] Bylander D M, Kleinman L, Lee S. Phys. Rev. B, 1990, 42: 1394-1403
[73] Shimazaki T, Asai Y. Chem. Phys. Lett., 2008, 466: 91-94
[74] Marques M A L, Vidal J, Oliveira M J T, Reining L, Botti S. Phys. Rev. B, 2011, 83: 035119
[75] Jaramillo J, Scuseria G E, Ernzerhof M. J. Chem. Phys., 2003, 118: 1068-1073
[76] Arbuznikov A V, Kaupp M. Int. J. Quantum Chem., 2011, 111: 2625-2638
[77] Krukau A V, Scuseria G E, Perdew J P, Savin, A. J. Chem. Phys., 2008, 129: art. no. 124103
[78] Sham L J, Kohn W. Phys. Rev., 1966, 145: 561
[79] Niquet Y M, Gonze, X. Phys. Rev. B, 2004, 70: art. no. 245115
[80] Aryasetiawan F, Gunnarsson O. Rep. Prog. Phys., 1998, 61: 237-312
[81] Linderberg J, Öhrn, Y. Propagators in Quantum Chemistry (2nd ed. ); John Wiley & Sons, 2004
[82] Hedin L. Phys. Rev., 1965, 139: A796-A823
[83] Hybertsen M S, Louie S G. Phys. Rev. B, 1986, 34: 5390-5413
[84] Rohlfing M, Kruger P, Pollmann, J. Phys. Rev. B, 1998, 57: 6485-6492
[85] Rinke P, Qteish A, Neugebauer J, Freysoldt C, Scheffler M. New J. Phys., 2005, 7: 126
[86] Rinke P, Qteish A, Neugebauer J, Scheffler M. Phys. Status Solidi B, 2008, 245: 929-945
[87] Jiang H, Gomez-Abal R I, Rinke P, Scheffler M. Phys. Rev. Lett., 2009, art. no. 102: 126403
[88] Jiang H. Acta Phys-Chim. Sin., 2010, 26: 1017-1033
[89] Rodl C, Fuchs F, Furthmuller J, Bechstedt F. Phys. Rev. B, 2008, art. no. 77: 235114
[90] Holm B, von Barth U. Phys. Rev. B, 1998, 57: 2108-2117
[91] Garcia-Gonzalez P, Godby R W. Phys. Rev. B, 2001, 63: art. no. 075112
[92] Kutepov A, Savrasov S Y, Kotliar G. Phys. Rev. B, 2009, 80: 041103
[93] Faleev S V, van Schilfgaarde M, Kotani T. Phys. Rev. Lett., 2004, 93: art. no. 126406
[94] Bruneval F, Vast N, Reining L. Phys. Rev. B, 2006, 74: art. no. 045102
[95] Kotani T, van Schilfgaarde M. Phys. Rev. B, 2007, 76: art. no. 165106
[96] Shishkin M, Marsman M, Kresse G. Phys. Rev. Lett., 2007, 99: art. no. 246403
[97] Sakuma R, Miyake T, Aryasetiawan F. Phys. Rev. B, 2008, 78: 075106
[98] Liao P L, Carter E A. Phys. Chem. Chem. Phys., 2011, 13: 15189-15199
[1] 张业文, 杨青青, 周策峰, 李平, 陈润锋. 热激活延迟荧光材料的光物理行为及性能预测[J]. 化学进展, 2022, 34(10): 2146-2158.
[2] 刘迪, 刘骞, 王永刚, 朱永法. Bi2SiO5半导体光催化剂[J]. 化学进展, 2018, 30(6): 703-709.
[3] 郄佳, 李明, 刘利, 梁英华, 崔文权*. g-C3N4光催化材料的第一性原理研究[J]. 化学进展, 2016, 28(10): 1569-1577.
[4] 田志美, 刘汪丹, 程龙玖. 硫醇保护金团簇的实验和理论研究现状[J]. 化学进展, 2015, 27(12): 1743-1753.
[5] 刘少名, 于波, 张文强, 朱建新, 翟玉春, 陈靖. 原子尺度研究固体氧化物池氧电极中氧迁移规律[J]. 化学进展, 2014, 26(09): 1570-1585.
[6] 张颖, 徐昕*. 新一代密度泛函方法XYG3[J]. 化学进展, 2012, 24(06): 1023-1037.
[7] 马玉臣*, 刘成卜. 研究激发态的多体格林函数理论[J]. 化学进展, 2012, 24(06): 981-1000.
[8] 王东琪, Wilfred F. van Gunsteren. 锕系计算化学进展[J]. 化学进展, 2011, 23(7): 1566-1581.
[9] 朱崇强 杨春晖 孙亮. 非线性光学晶体CdGeAs2点缺陷的研究*[J]. 化学进展, 2010, 22(0203): 315-321.
[10] 徐宇虹,尹鸽平,左朋建. 锂离子电池正极材料的第一性原理研究进展[J]. 化学进展, 2008, 20(11): 1827-1833.
[11] 刘文剑. 相对论量子化学新进展*[J]. 化学进展, 2007, 19(06): 833-851.
[12] 李震宇 贺 伟 杨金龙. 密度泛函理论及其数值方法新进展*[J]. 化学进展, 2005, 17(02): 192-202.
[13] 戴瑛,黎乐民. 密度泛函理论处理激发态与多重态结构研究进展[J]. 化学进展, 2001, 13(03): 167-.