English
新闻公告
More
化学进展 2012, Vol. 24 Issue (06): 886-909 前一篇   后一篇

• 量子化学专辑 •

增长法在离域体系纳米线中的应用

青木百合子*1,3, 顾凤龙*2,3   

  1. 1. 九州大学大学院综合理工学研究院能量物质科学部门 816-8580 日本福冈;
    2. 华南师范大学计算量子化学中心, 广州 510631;
    3. 日本科技厅战略的研究推进事业 东京都千代田区 三番町5番地, 102-0075
  • 收稿日期:2011-11-01 修回日期:2012-03-01 出版日期:2012-06-24 发布日期:2012-05-11
  • 通讯作者: 青木百合子, 顾凤龙 E-mail:aoki@nrm.kyushu-u.ac.jp; gu@scnu.edu.cn

Elongation Method for Delocalized Nano-wires

Yuriko Aoki1,3, Feng Long Gu2,3   

  1. 1. Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580, Japan;
    2. Center for Computational Quantum Chemistry, South China Normal University, Guangzhou 510631, China;
    3. Japan Science and Technology Agency, CREST, 4-1-8 Hon-chou, Kawaguchi, Saitama 332-0012, Japan
  • Received:2011-11-01 Revised:2012-03-01 Online:2012-06-24 Published:2012-05-11
本文综述了增长法这样一个原先起源于理论合成非周期性聚合物的方法。通过不同的体系验证了增长法高精度和高效率的特性。通过轨道漂移的处理手段,增长法能成功地应用到离域的p共轭体系。其处理手法是在增长过程中一些离域性特别强的分子轨道被重新指认到活性轨道中去,并与进攻的单元相互作用。增长法也可用来确定离域的卟啉线体系的非线性光学系数。
The elongation method, originally proposed for theoretical synthesis of aperiodic polymers, has been reviewed. The reliability and efficiency of the elongation method have been proven by various systems. By means of orbital shift, the elongation method has been successfully applied to delocalized p-conjugated systems. During the elongation process, some strongly delocalized orbitals are assigned to active orbitals and joined with the interaction of the attacking monomer. The elongation method is also applied to determine the NLO properties of delocalized porphyrin wires.

中图分类号: 

()
[1] Goedecker S. Rev. Mod. Phys., 1999, 71: 1085-1123
[2] Salek P, Hoest S, Thoegersen L, Joergensen P, Manninen P, Olsen J, Jansik B, Reine S, Pawlowski F, Tellgren E, Helgaker T, Coriani S. J. Chem. Phys., 2007, 126: art. no. 114110
[3] Zhao Q, Yang W. J. Chem. Phys., 1995, 102: 9598-9603
[4] Kim J, Mauri F, Galli G. Phys. Rev. B, 1995, 52: 1640-1648
[5] Hernandez E, Gillan M. Phys. Rev. B, 1995, 51: 10157-10160
[6] Yang W. Phys. Rev. Lett., 1991, 66: 1438-1441
[7] Yang W, Lee T-S. J. Chem. Phys., 1995, 103: 5674-5678
[8] Akama T, Kobayashi M, Nakai H. J. Comput. Chem., 2007, 28: 2003-2012
[9] Kobayashi M, Imamura Y, Nakai H. J. Chem. Phys., 2007, 127: art. no. 074103
[10] Kobayashi M, Yoshikawa T, Nakai H. Chem. Phys. Lett., 2010, 500: 172-177
[11] Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M. Chem. Phys. Lett., 1999, 313: 701-706
[12] Fedorov D G, Kitaura K. J. Chem. Phys., 2004, 120: 6832-6840
[13] Fedorov D G, Kitaura K. Chem. Phys. Lett. 2004, 389: 129-134
[14] Fedorov D G, Kitaura K. J. Phys. Chem. A, 2007, 111: 6904-6914
[15] Mochizuki Y, Koikegami S, Nakano T, Amari S, Kitaura K. Chem. Phys. Lett., 2004, 396: 473-479
[16] Mochizuki Y, Fukuzawa K, Kato A, Tanaka S, Kitaura K, Nakano T. Chem. Phys. Lett., 2005, 410: 247-253
[17] Mochizuki Y, Ishikawa T, Tanaka K, Tokiwa H, Nakano T, Tanaka S. Chem. Phys. Lett., 2006, 418: 418-422
[18] Mochizuki Y, Yamashita K, Murase T, Nakano T, Fukuzawa K, Takematsu K, Watanabe H, Tanaka S. Chem. Phys. Lett., 2008, 457: 396-403
[19] White S R. Phys. Rev. Lett., 1992, 69: 2863-2866
[20] Kurashige Y, Yanai T. J. Chem. Phys., 2009, 130: art. no. 234114
[21] Mizukami W, Kurashige Y, Yanai T. J. Chem. Phys., 2010, 133: art. no. 091101
[22] Imamura A, Aoki Y, Maekawa K. J. Chem. Phys., 1991, 95: 5419-5431
[23] Aoki Y, Imamura A. J. Chem. Phys., 1992, 97: 8432-8440
[24] Aoki Y, Suhai S, Imamura A. J. Chem. Phys., 1994, 101: 10808-10823
[25] Gu F L, Aoki Y, Imamura A, Bishop D M, Kirtman B. Mol. Phys., 2003, 101: 1487-1494
[26] Aoki Y, Gu F L, Orimoto Y, Suhai S, Imamura A. Computational Methods in Science and Engineering: Theory and Computation: Old Problems and New Challenge, Lectures Presented at the ICCMSE, 2007, 963: 120-137
[27] Gu F L, Imamura A, Aoki Y. Elongation Method for Polymers and its Application to Nonlinear Optics, in Atoms, Molecules and Clusters in Electric Fields: Theoretical Approaches to the Calculation of Electric Polarizabilities. In: Computational Numerical and Mathematical Methods in Sciences and Engineering(Ed. Maroulis G), London: Imperial College Press, 2006, 1: 97-177
[28] Gu F L, Aoki Y, Korchowiec J, Imamura A, Kirtman B. J. Chem. Phys., 2004, 121: 10385-10391
[29] Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J H, Koseki S, Matsunaga N, Nguyen K A, Su S J, Windus T L, Dupuis M, Montgomery J A. J. Comput. Chem., 2003, 14: 1347-1363
[30] Korchowiec J, Gu FL, Imamura A, Kirtman B, Aoki Y. Intl. J. Quantum Chem., 2005, 102: 785-794
[31] Korchowiec J, Silva P, Makowski M, Gu F L, Aoki Y. Intl. J. Quantum Chem., 2010, 110: 2130-2139
[32] Korchowiec J, Gu F L, Aoki Y. J. Comput. Meth. Sci. Eng., 2006, 6: 189-200
[33] Korchowiec J, Lewandowski J, Makowski M, Gu F L, Aoki Y. J. Comput. Chem., 2009, 30: 2515-2525
[34] Ohnishi S, Gu F L, Naka K, Imamura A, Kirtman B, Aoki Y. J. Phys. Chem. A, 2004, 108: 8478-8484
[35] Ohnishi S, Orimoto Y, Gu F L, Aoki Y. J. Chem. Phys., 2007, 127: art. no. 084702
[36] Chen W, Yu G T, Gu F L, Aoki Y. Chem. Phys. Lett., 2009, 474: 175-179
[37] Chen W, Yu G T, Gu F L, Aoki Y. J. Phys. Chem. C, 2009, 113: 8447-8454
[38] Orimoto Y, Gu F L, Imamura A, Aoki Y. J. Chem. Phys., 2007, 126: art. no. 215104
[39] Xie P, Liu K, Gu FL, Aoki Y. Int. J. Quantum Chem., 2011, 112: 230-239.
[40] Aoki Y, Loboda O, Liu K, Makowski M, Gu F L. Theor. Chem. Acc., 2011, 130: 595-608
[41] Pomogaeva A, Kirtman B, Gu F L, Aoki Y. J. Chem. Phys., 2008,128: art. no. 074109
[42] Pomogaeva A, Springborg M, Kirtman B, Gu F L, Aoki Y. J. Chem. Phys., 2009,130: art. no. 194106
[43] [2011-05-30].http: //xray.bmc.uu.se/hicup/LYC/index.html#COO
[44] Gaussian 03, Revision C.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman J R, Montgomery JA r, Vreven T, Kudin KN, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth GA, Salvador P, Dannenberg J J, Zakrzewski VG, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA, Gaussian, Inc., Wallingford, CT, 2004
[45] Meier H, M黨ling B. Issue 5th Eurasian Conference on Heterocyclic Chemistry, ARKIVOC (2009) ix: 57
[46] Obara Y, Takimiya K, Aso Y, Otsubo T. Tetrahedron Lett., 2001, 42: 6877-6881
[47] Tormos G V, Nugara P N, Lakshmikantham M V, Gava M-P. Synth. Met., 1993, 53: 271-281
[48] Kumble R, Palese S, Lin V S Y, Therien M J, Hochstrasser R M. J. Am. Chem. Soc., 1998, 120: 11489-11498
[49] Beljonne D, O'Keefe G E, Hamer P J, Friend R H, Anderson H L, Bre'das J L. J. Chem. Phys., 1997, 106: 9439-9460
[50] Tsuda A, Osuka A. Science, 2001, 293: 79-82
[51] Tsuda A, Nakano A, Furuta H, Yamochi H, Osuka A. Angew. Chem. Int. Ed., 2000, 39: 558-561
[52] Osuka A, Shimidzu H. Angew. Chem. Int. Ed. Engl., 1997, 36: 135-137
[53] Ogawa T, Nishimoto Y, Yoshida N, Ono N, Osuka A. Angew. Chem. Int. Ed., 1999, 38: 176-179
[54] Ahn T K, Yoon Z S, Hwang I W, Lim J K, Rhee H, Joo T, Sim F, Kim S K, Aratani N, Osuka A, Kim D. J. Phys. Chem. B, 2005, 109: 11223-11230
[55] Yan L K, Pomogaeva A, Gu F L, Aoki Y. Theor. Chem. Acc., 2010, 125: 511-520
[56] Champagne B, Kirtman B. Handbook of Advanced Electronic and Photonic Materials and Devices, vol 9. Elsevier, 2001, p99
[57] Nakajima T, Hirao K. J. Chem. Phys., 2000, 113: 7786-7789
[58] Makowski M, Korchowiec J, Gu FL, Aoki Y. J. Comput. Chem., 2010, 31: 1733-1740
[59] Makowski M, Gu F L, Aoki Y. J. Comput. Meth. Sci. Eng., 2010, 10: 473-481
[60] Aoki Y and Gu FL. Theory and Computation: Old Problems and New Challenge, International Conference of Computational Methods in Sciences and Engineering 2009(ICCMSE 2009), in press
[1] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[2] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[3] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[4] 王睿, 台国安, 伍增辉, 邵伟, 候闯, 郝金钱. 硼纳米结构的理论和实验研究[J]. 化学进展, 2019, 31(12): 1696-1711.
[5] 闫吉军, 康传清*, 高连勋. 阴离子-萘四酸双酰亚胺相互作用及其应用[J]. 化学进展, 2018, 30(7): 902-912.
[6] 周启峰, 江波*, 杨海波*. 可作为碳纳米管片段的共轭芳烃大环的设计合成[J]. 化学进展, 2018, 30(5): 628-638.
[7] 张华东, 李攻科*, 胡玉斐*. 埃洛石纳米管在分离富集中的应用[J]. 化学进展, 2018, 30(2/3): 198-205.
[8] 丁晨, 赵兵*, 祁宁. 基于银纳米线导电网络的电子纺织品[J]. 化学进展, 2017, 29(8): 892-901.
[9] 殷俞*, 张壮壮, 徐丹, 文志豪, 杨志峰, 袁爱华. 多孔材料基π络合吸附材料的合成及其应用[J]. 化学进展, 2017, 29(6): 628-636.
[10] 蒋坤朋, 韩晓军*. 聚邻苯二胺微纳米相关材料的制备和应用[J]. 化学进展, 2017, 29(12): 1499-1508.
[11] 张贺, 张驰, 宋晔. 阳极氧化钛纳米管阵列膜可控制备[J]. 化学进展, 2016, 28(6): 773-783.
[12] 王晶, 范昊雯, 张贺, 陈群, 刘仪, 马卫华. 钛的阳极氧化过程与TiO2纳米管的形成机理[J]. 化学进展, 2016, 28(2/3): 284-295.
[13] 罗杰, 李朝威, 兰竹瑶, 陈名海, 姚亚刚, 赵岳. 纳米碳基材料在导电胶黏剂中的应用[J]. 化学进展, 2015, 27(9): 1158-1166.
[14] 万晓梅, 张川, 余定华, 黄和, 胡燚. 碳纳米管固定化酶[J]. 化学进展, 2015, 27(9): 1251-1259.
[15] 陈茂龙, 尹帮少, 宋建新. 铃木偶联反应构筑卟啉阵列的研究进展[J]. 化学进展, 2015, 27(6): 641-654.