English
新闻公告
More
化学进展 2012, Vol. 24 Issue (06): 879-885 前一篇   后一篇

• 量子化学专辑 •

[2+2]环加成反应机理的理论研究

方德彩*   

  1. 北京师范大学化学学院 北京 100875
  • 收稿日期:2012-12-01 修回日期:2012-03-01 出版日期:2012-06-24 发布日期:2012-05-11
  • 通讯作者: 方德彩 E-mail:dcfang@bnu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21073016)和教育部博士点基金(No.20090003110008)资助

Theoretical Studies on the Mechanisms of [2+2] Cycloaddition Reactions

Fang Decai   

  1. College of Chemistry, Beijing Normal University, Beijing 100875, China
  • Received:2012-12-01 Revised:2012-03-01 Online:2012-06-24 Published:2012-05-11
[2+2]环加成反应是有机化学中非常重要的一类反应,其机理的研究一直是实验和理论工作者关注的课题之一。本文从理论的角度综述了三类[2+2]环加成反应的反应机理,即简单烯烃或炔烃参与的环加成反应、累积双键体系参与的环加成反应以及稀土钍化合物参与的环加成反应, 得出对于简单的烯烃或炔烃之间的环加成反应一般是按双自由基机理进行,而其他两类反应主要按协同或两性离子方式进行,并且从前线分子轨道作用理论角度分析了产生不同反应机理的原因。
[2+2] cycloaddition reaction is one type of the most important reactions in the field of organic chemistry, and the mechanisms of [2+2] cycloaddition reactions are always hot topic both for experimental and theoretical researchers. In this paper, three types of [2+2] cycloaddition reactions, including simple olefins or alkynes, cumulenes, Th compounds, have been classified and reviewed. The obtained results indicated that the cycloaddition reactions involving simple olefins or alkynes are proceeding in diradical mechanism generally, and the others are proceeding in either concerted or zwitterion mechanism, all of which have been elucidated with frontier molecular orbital interactions. Contents
1 Introduction
2 [2+2] cycloaddition reactions of olefins or alkynes
3 [2+2] cycloaddition reactions of cumulenes X=Y=Z
3.1 [2+2] cycloaddition reactions of ketene
3.2 [2+2] cycloaddition reactions of keteniminium and 2-aza-allene cations
4 [2+2] cycloaddition reactions of Th-containing compounds
5 Conclusions and Outlooks

中图分类号: 

()
[1] Woodward R B, Hoffmann R. The Conservation of Orbital Symmetry. NY: Academic Press, 1969
[2] Woodward R B, Hoffmann R. Angew. Chem. Int. Ed. Engl., 1969, 8: 781-853
[3] Fukui K. Acc. Chem. Res., 1971, 4: 57-64
[4] 福井谦一(Fukui K). 化学反应与电子轨道(Chemical Reaction and Electron Orbital). 北京: 科学出版社(Beijing: Science Press), 1985
[5] 唐敖庆(Tang A Q). 中国科学(Science in China), 1975, (2): 213
[6] Bader R F W. Mol. Phys., 1960, 3: 137-151
[7] Bader R F W. Can. J. Chem., 1962, 40: 1164-1175
[8] Pearson R G. Acc. Chem. Res., 1971, 4: 152-160
[9] Chen G J, Fang D C, Fu X Y. Int. J. Quantum Chem. QCS, 1989, 23: 501-508
[10] 陈光巨(Chen G J), 傅孝愿(Fu X Y) 北京师范大学学报(自然科学版)(J. Beijing Norm. Univ. Nat. Sci. ), 1990, (3): 89-91
[11] 陈光巨(Chen G J), 傅孝愿(Fu X Y), 唐敖庆(Tang A Q). 高等学校化学学报(Chem. J. Chin. Univ. ), 1992, 13: 513-516
[12] Chen G J, Fu X Y, Tang A Q. Chin. J. Chem., 1992, 3: 193-194
[13] Bernardi F, Pappalardo R R, Robb M A, Venturini A. J. Mol. Struc. (THEOCHEM), 1995, 357: 33-36
[14] Bruckner R, Huisgen R, Schmid J. Tetrahedron Lett., 1990, 31: 7129-7132
[15] Huisgen R. Acc. Chem. Res., 1977, 10: 117-124
[16] Huisgen R. Acc. Chem. Res., 1977, 10: 199-206
[17] Huisgen R. Pure Appl. Chem., 1980, 32: 2283-2295
[18] Fitjer L, Kliebisch V, Wehle D, Modaressi S. Tetrahedron Lett., 1982, 23: 1661-1664
[19] Fitjer L, Modaressi S. Tetrahedron Lett., 1993, 24: 5495-5498
[20] Olivella S, Pericas M A, Riera A, Sole A. J. Am. Chem. Soc., 1986, 108: 6884-6888
[21] Gilbert J C, Baze M E. J. Am. Chem. Soc., 1986, 106: 1885-1886
[22] Olivella S, Pericas M A, Riera A, Sole A. J. Chem. Soc. Perkin Trans., 1986, 2: 613-617
[23] Gilbert J C, Kirschner S. Tetrahedron Lett., 1993, 34: 599-602
[24] Gilbert J C, Kirschner S. Tetrahedron Lett., 1993, 34: 603-606
[25] zkan I, Kinal A. J. Org. Chem., 2004, 69: 5390-5394
[26] Bachrach S M, Gilbert J C. J. Org. Chem., 2004, 69: 6357-6364
[27] Kinal A, Piecuch P. J. Phys. Chem. A, 2006, 110: 367-378
[28] Viehe H G, Merényi D I R, Oth J F M, Valange P. Angew. Chem. Int. Ed., 1964, 3: 746-747
[29] Viehe H G, Merényi D I R, Oth J F M, Senders J R, Valange P. Angew. Chem. Int. Ed., 1964, 3: 755-758
[30] Yao Z K, Yu Z X. J. Am. Chem. Soc., 2011, 133: 10864-10877
[31] Kiefer E F, Okamura M Y. J. Am. Chem. Soc., 1968, 90: 4187-4189
[32] Pasto D J. J. Am. Chem. Soc., 1979, 101: 37-46
[33] Dai S H, Dolbier W R. J. Am. Chem. Soc., 1972, 94: 3946-3952
[34] Dolbier W R, Dai S H. J. Am. Chem. Soc., 1968, 90: 5028-5030
[35] Jacobs T L, McClenon J R, Muscio D J. J. Am. Chem. Soc., 1969, 91: 6038-6041
[36] Pasto D J, Warren S E, Morrison M A. J. Org. Chem., 1981, 46: 2837-2841
[37] Pasto D J, Warren S E. J. Am. Chem. Soc., 1982, 104: 3670-3676
[38] Pasto D J, Yang S H. J. Am. Chem. Soc., 1984, 106: 152-157
[39] Pasto D J, Yang S H. J. Org. Chem., 1986, 51: 3611-3619
[40] 张绍文(Zhang S W), 方德彩(Fang D C), 傅孝愿(Fu X Y), 化学物理学报(Chin. J. Chem. Phys. ), 1991, 4: 422-429
[41] Gorden M S, Barton T J, Nakano H. J. Am. Chem. Soc., 1997, 119: 11966-11973
[42] Yoshizawa K, Kondo Y, Kang S Y, Naka A, Ishikawa M. Organometallics, 2002, 21: 3271-3277
[43] Pavelka L C, Baines K M. Organometallics, 2011, 30: 2261-2271
[44] Lu X. J. Am. Chem. Soc., 2003, 125: 6384-6385
[45] Wang Y, Ma J, Inagaki S, Pei Y. J. Phys. Chem. B, 2005, 109: 5199-5206
[46] Ryan P M, Teague L C, Boland J J. J. Am. Chem. Soc., 2009, 131: 6768-6774
[47] Bernardi F, Olivucci M, Robb M A. Chem. Soc. Rev., 1996, 25: 321-328
[48] Reguero M, Olivucci M, Bernardi F, Robb M A. J. Am. Chem. Soc., 1994, 116: 2103-2114
[49] Bertrand C, Bouguant J, Pete J P, Humbel S. J. Mol. Struc. (THEOCHEM), 2001, 538: 165-177
[50] Jaque P, Toro-Labbé A, Geerlings P, Proft F D. J. Phys. Chem. A, 2009, 113: 332-344
[51] Cucarull-González J R, Hernando J, Alibés R, Figueredo M, Front J, Rodríguez-Santíago L, Sodupe M. J. Org. Chem., 2010, 75: 4392-4401
[52] Holden K G. Chemistry and Biology of SymbolbA@ -Lactam Antibiotics, Vol. 2. Morin R B, Gorman M. (Eds. ). NY: Academic, 1982
[53] Muller L L, Hamer J. 1, 2-Cycloaddition Reaction. The Formation of Three- and Four-Membered Heterocycles. NY: Interscience, 1967
[54] Thomas R C. Recent Progress in the Chemical Synthesis of Antibiotics. Lukacs G, Ohno M. (Eds. ) Berlin: Springer-Verlag, 1990
[55] Fang D C, Fu X Y. Int. J. Quantum Chem., 1992, 43: 669-676
[56] Yamabe S, Minato T, Osamura Y. J. Chem. Soc. Chem. Commun., 1993, 450-452
[57] Palomo C, Cossío F P, Odiozola J M, Oiarbide M, Ontoria J M. J. Org. Chem., 1991, 56: 4418-4428
[58] Palomo C, Cossío F P, Cuevas C, Lecea B, Mielgo A, Rom ??倞 n P, Luque A, Martinez-Ripoll M. J. Am. Chem. Soc., 1992, 114: 9360-9369
[59] Sordo J A, González J, Sordo T L. J. Am. Chem. Soc., 1992, 114: 6249-6251
[60] Cossío F P, Ugalde J M, Lopez X, Lecea B, Palomo C. J. Am. Chem. Soc., 1993, 115: 995-1004
[61] López R, Sordo T L, Sordo J A, González J. J. Org. Chem., 1993, 58: 7036-7037
[62] Cossío F P, Arrieta A, Lecea B, Ugalde J M. J. Am. Chem. Soc., 1994, 116: 2085-2093
[63] Xu Z F, Fang D C, Fu X Y. J. Mol. Struc. (THEOCHEM), 1994, 305: 191-196
[64] Arrastia I, Arraieta A, Ugalde J M, Cossío F P. Tetrahedron Lett., 1994, 35: 7825-7828
[65] Assfeld X, Ruiz-Lopez N F, González J, Lopez R, Sordo J A, Sordo T L. J. Comput. Chem., 1994, 15: 479-487
[66] Assfeld X, Ruiz-Lopez N F, González J, Lopez R, Sordo J A, Sordo T L. J. Mol. Struc. (THEOCHEM), 1995, 331: 1-2
[67] Fang D C, Fu X Y. J. Mol. Struc. (THEOCHEM), 1995, 331: 3
[68] Lecea B, Arrastia I, Arrieta A, Roa G, Lopez X, Arriortua M I, Ugalde J M, Cossío F P. J. Org. Chem., 1996, 61: 3070-3079
[69] Lopez R, Ruiz-Lopez N F, Rinaldi D, Sordo J A, Sordo T L. J. Phys. Chem., 1996, 100: 10600-10608
[70] Fang D C, Fu X Y. Int. J. Quantum Chem., 1996, 57: 1107-1114
[71] Arrieta A, Lecea B, Cossío F P. J. Org. Chem., 1998, 63: 5869-5876
[72] Truong T N. J. Phys. Chem. B, 1998, 102: 7877-7881
[73] Arrieta A, Cossío F P, Lecea B. J. Org. Chem., 2000, 65: 8458-8464
[74] Bharatam P V, Kumar R S, Mahajan M P. Org. Lett., 2000, 2: 2725-2728
[75] Zhou C, Birney D M. J. Am. Chem. Soc., 2002, 124: 5231-5241
[76] Venturini A, González J. J. Org. Chem., 2002, 67: 9089-9092
[77] Huisgen R, Davis B A, Morikawa M. Angew. Chem. Int. Ed. Engl., 1968, 7: 826-827
[78] 方德彩(Fang D C), 傅孝愿(Fu X Y). 北京师范大学学报(自然科学版)(J. Beijing Norm. Univ. Nat. Sci. ), 1991, 27: 69-74
[79] Valenti E, Pericas M A, Moyano A. J. Org. Chem., 1990, 55: 3582-3593
[80] Wang X, Houk K N. J. Am. Chem. Soc., 1990, 112: 1754-1756
[81] Rzepa H S, Wylie W A. Int. J. Quantum Chem., 1992, 44: 469-476
[82] Deubel D V. J. Phys. Chem. A, 2002, 106: 431-437
[83] Pons J M, Pommierm A, Rajzmann M. J. Mol. Struc. (THEOCHEM), 1994, 119: 361-364
[84] Zhang X H, Geng Z Y. J. Mol. Struc. (THEOCHEM), 2010, 955: 33-38
[85] Ghosez L. Angew. Chem. Int. Ed. Engl., 1972, 11: 852
[86] Falmagne J B, Escudero J, Taleb-Sahraout S, Ghosez L. Angew. Chem. Int. Ed. Engl., 1981, 20: 879-880
[87] Ghosez L, Bogdam S, Céréstat M, Frydrych C, Marchand-Brynaert J, Portuguez M M, Huber I. Pure Appl. Chem., 1987, 59: 393-398
[88] Genicot C, Gobeaux B, Ghosez L. Tetrahedron Lett., 1991, 32: 3827-3830
[89] Genicot C, Ghosez L. Tetrahedron Lett., 1992, 33: 7357-7360
[90] Barbaro G, Battaglia A, Btuno C, Giorgianni P, Guerrini A. J. Org. Chem., 1996, 61: 8480-8488
[91] MarkóI, Ronsmans B, Hesbain-Frisque A M, Dumas S, Ghosez L. J. Am. Chem. Soc., 1985, 107: 2192-2194
[92] Ghosez L, Markó I, Hesbain-Frisque A M. Tetrahedron Lett., 1986, 27: 5211-5214
[93] Gholerton I J, Collington E W, Finch H, Williams D. Tetrahedron Lett., 1988, 29: 3369-3372
[94] Gobeaux B, Ghosez L. Hetercycles, 1989, 28: 29-32
[95] Chen L Y, Ghosez L. Tetrahedron Lett., 1990, 31: 4467-4470
[96] Chen L Y, Ghosez L. Tetrahedron: Asymmetry, 1991, 2: 1181-1184
[97] Shim P J, Kim H D. Tetrahedron Lett., 1998, 39: 9517-9520
[98] Adam J M, Ghosez L, Houk K N. Angew. Chem. Int. Ed. Engl., 1999, 38: 2728-2730
[99] Ding W J, Fang D C. J. Org. Chem., 2001, 66: 6673-6678
[100] Arrieta A, Cossio F P, Lecea B. J. Org. Chem., 1999, 64: 1831-1842
[101] Yang S Y, Sun C K, Fang D C. J. Org. Chem., 2002, 67: 3841-3846
[102] Ren W, Zi G, Fang D C, Walter M D. Chem. Eur. J., 2011, 17: 12669-12682
[103] Ren W, Zi G, Fang D C, Walter M D. J. Am. Chem. Soc., 2011, 133: 13183-13196
[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 董军, 许家喜. 烯亚砜化合物的制备及反应概述[J]. 化学进展, 2022, 34(5): 1088-1108.
[3] 廖伊铭, 吴宝琪, 唐荣志, 林峰, 谭余. 环张力促进的叠氮-炔环加成反应[J]. 化学进展, 2022, 34(10): 2134-2145.
[4] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.
[5] 李智, 唐后亮, 冯岸超, 汤华燊. “活性”/可控自由基聚合制备两性离子聚合物及其应用[J]. 化学进展, 2018, 30(8): 1097-1111.
[6] 郑柳春, 李春成*, 肖耀南, 张博, 王召栋. 可生物降解抗污材料[J]. 化学进展, 2017, 29(8): 824-832.
[7] 慈吉良, 康宏亮, 刘晨光, 贺爱华, 刘瑞刚. 两性离子聚合物的抗蛋白质吸附机理及其应用[J]. 化学进展, 2015, 27(9): 1198-1212.
[8] 陈杨军, 刘湘圣, 王海波, 王寅, 金桥, 计剑. 生物医用纳米颗粒表面的两性离子化设计[J]. 化学进展, 2014, 26(11): 1849-1858.
[9] 何晓燕*, 周文瑞, 徐晓君, 杨武*. 两性离子聚合物的合成及应用[J]. 化学进展, 2013, 25(06): 1023-1030.
[10] 刘红艳, 周健* . 两性离子聚合物的生物应用[J]. 化学进展, 2012, 24(11): 2187-2197.
[11] 杨绳岩, 吴振奕, 万新军, 晏娟. 卟啉-富勒烯络合物的合成[J]. 化学进展, 2011, 23(6): 1123-1136.
[12] 王春,刘伟华,周欣,李越敏,李云鹏. 有机催化不对称[4+2]环加成反应*[J]. 化学进展, 2009, 21(09): 1857-1868.
[13] 张韶光,刘俊辉,张文雄,席振峰. 硅杂六元环化合物的反应* [J]. 化学进展, 2009, 21(0708): 1487-1493.
[14] 方钊,唐瑞仁,罗佐文. 烯酮中间体及其在不对称环加成反应中的应用[J]. 化学进展, 2008, 20(10): 1544-1552.
[15] 许家喜,焦鹏. 固相载体上的环加成反应及其应用[J]. 化学进展, 2000, 12(02): 131-.
阅读次数
全文


摘要

[2+2]环加成反应机理的理论研究