English
新闻公告
More
化学进展 2012, Vol. 24 Issue (06): 873-878 前一篇   后一篇

• 量子化学专辑 •

Pd/ZnO催化甲醇水蒸气重整理论研究

陈兆旭*1, 黄玉成1,2, 何翔1   

  1. 1. 南京大学理论与计算化学研究所 南京 210093;
    2. 安徽师范大学化学与材料学院 芜湖 241000
  • 收稿日期:2011-12-01 修回日期:2012-04-01 出版日期:2012-06-24 发布日期:2012-05-11
  • 通讯作者: 陈兆旭 E-mail:zxchen@nju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20973090)资助

Theoretical Study of the Mechanism of Methanol Steam Reforming over Pd/ZnO

Chen Zhaoxu1, Huang Yucheng1,2, He Xiang1   

  1. 1. Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, China;
    2. College of Chemistry and Materials, Anhui Normal University, 241000, China
  • Received:2011-12-01 Revised:2012-04-01 Online:2012-06-24 Published:2012-05-11
随着化石能源的日渐枯竭和人们对环境保护的日益重视,发展清洁高效的新能源成为世界各国高度关注的战略课题。甲醇水蒸气重整是生产氢能的有效方法之一,Pd/ZnO催化剂热稳定性好、选择性高,是可能替代Cu/ZnO的催化剂。本文综述了近十年来采用理论方法对Pd/ZnO催化甲醇水蒸气重整制氢机理的研究工作。文章首先论述了催化剂的研究进展,然后对水在单体和聚集状态下在单层及多层平整的和阶梯状的合金表面的吸附和解离进行了总结;接着对甲醇、甲氧基和甲醛在合金表面的吸附和化学反应的热力学和动力学作了介绍;随后基于计算结果,对甲醇反应机理给予了详细的描述。最后对全文进行了总结并对未来的研究作了展望。
With the ever-increasing attention to clean energy and environmental protection, developing new energy sources becomes a heated issue all over the world. Hydrogen energy is a clean and efficient energy source, and methanol steam reforming (MSR) is an important means to produce hydrogen. In this paper we review the theoretical studies of the MSR on Pd/ZnO during the past decade. We first review the investigations on the structures and compositions of Pd/ZnO catalysts modeled by Pd-Zn alloy. Then we summarize the work of adsorption and dissociation of water on the flat and stepped surfaces of Pd-Zn alloy. Surface chemistry of methanol, methoxy and formaldehyde on Pd-Zn alloy and other pertinent surfaces is described, followed by the discussion of the MSR reaction mechanism. Finally the conclusions and outlook are presented. Contents
1 Introduction
2 Investigations on Pd/ZnO catalysts
3 Water adsorption and dissociation on alloy surfaces
3.1 Water on mono-and multi-layer Pd-Zn(111) surfaces
3.2 Water on mono-and multi-layer Pd-Zn(221) surfaces
4 The chemistry of methanol and related species
4.1 Adsorption and dissociation of methanol
4.2 Adsorption and dissociation of methoxy
4.3 Adsorption and dissociation of formaldehyde
5 Reaction mechanism of methanol steam reforming
6 Conclusions and Outlook

中图分类号: 

()
[1] Trimm D L, Önsan Z I. Catal. Rev., 2001, 43(1/2): 31-84
[2] Holladay J D, Wang Y, Jones E. Chem. Rev., 2004, 104(10): 4767-4789
[3] 张晓阳 (Zhang X Y). 天然气化工 (Natural Gas Chemical Industry),2007,32:10-13
[4] Choudhary T V, Goodman D W. Catal. Today, 2002, 77(1/2): 65-78
[5] Iwasa N, Takezawa N. Topics Catal., 2003, 22(3/4): 215-224
[6] Iwasa N, Masuda S, Ogawa N, Takezawa N. Appl. Catal. A, 1995, 125(1): 145-157
[7] Iwasa N, Mayanagi T, Masuda S, Takezawa N. Reaction Kinetics Catal. Lett., 2000, 69(2): 355-360
[8] Chen Z X, Neyman K M, Gordienko A B, Rösch N. Phys. Rev. B, 2003, 68(7): art. no. 075417
[9] Iwasa N, Mayanagi T, Ogawa N, Sakata K, Takezawa N. Catal. Lett., 1998, 54(3): 119-123
[10] Chen Z X, Neyman K M, Rösch N. Surf. Sci.,2004, 548(1/3): 291-300
[11] Suwa Y, Ito S I, Kameoka S, Tomishige K, Kunimori K. Appl. Catal. A, 2004, 267(1/2): 9-16
[12] Rameshan C H, Stadlmayr W, Weilach C H, Penner S, Lo-renz H, Haevecker M, Blume R, Rocha T, Teschner D, Knop-Gericke A, Schloegl R, Memmel N, Zemlyanov D, Rup-prechter G, Kloetzer B. Angew. Chem., 2010, 49(18): 3224-3227
[13] Koch H P, Bako I, Weirum G, Kratzer M, Schennach R. Surf. Sci., 2010, 604(11/12): 926-931
[14] Bayer A, Flechtner K, Denecke R, Steinruck H P, Neyman K M, Rosch N. Surf. Sci., 2006, 600(1): 78-94
[15] Jeroro E, Vohs J M. J. Amer. Chem. Soc., 2008, 130(31): 10199-10207
[16] He X, Huang Y, Chen Z X. Phys. Chem. Chem. Phys., 2011, 13(1): 107-109
[17] Huang Y, He X, Chen Z X. J. Chem. Phys., 2011, 134(18): art. no. 184702
[18] Huang Y, Ding W, Chen Z X. J. Chem. Phys., 2010, 133 (21): art. no. 214702
[19] Lim K H,Moskaleva L V, Neyman K M, Rösch N. ChemPhysChem, 2006, 7: 1802-1812
[20] Smith G K, Lin S, Lai W Z, Datye A, Xie D, Guo H. Surf. Sci., 2011, 605: 750-759
[21] Huang Y, Chen Z X. J. Phys. Chem. C, 2011, 115(38): 18752-18760
[22] Koch H P, Bako I, Schennach R. Surf. Sci., 2010, 604(5/6): 596-608
[23] 黄玉成(Huang Y C). 南京大学博士论文(Doctoral Disser-tation of Nanjing University), 2011
[24] Huang Y, Chen Z X. Langmuir, 2010, 26(13): 10796-10802
[25] Chen Z X, Neyman K M, Lim K H, Rösch N. Langmuir, 2004, 20: 8068-8077
[26] Chen Z X, Lim K H, Neyman K M, Rösch N. Phys. Chem. Chem. Phys., 2004, 6:4499-4504
[27] Chen Z X, Lim K H, Neyman K M, Rösch N. J. Phys. Chem. B, 2005, 109: 4568-4574
[28] Gu X K, Li W X. J. Phys. Chem. C, 2010, 114: 21539-21547
[29] Lim K H,Chen Z X, Neyman K M, Rösch N. J. Phys. Chem. B, 2005, 110: 14890-14897
[30] Dagle R A, Platon A, Palo D R, Datye A K, Vohs J M, Wang Y. Appl. Catal. A, 2008, 342(1/2): 63-68
[31] Lin S, Xie D, Guo H. J. Phys. Chem. C, 2011, 115: 20583-20589
[32] Lin S, Xie D, Guo H. Catal., 2011, 1(10): 1263-1271
[33] Dagle R A, Chin Y H, Wang Y. Topics Catal., 2007, 46 (3/4): 358-362
[34] Karim A M, Conant T, Datye A K. J. Catal., 2006, 243(2): 420-427
[35] Karim A M, Conant T, Datye A K. Phys. Chem. Chem. Phys., 2008, 10: 5584-5590
[1] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[2] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[3] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[4] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[5] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[6] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[7] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[8] 葛明, 李振路. 基于银系半导体材料的全固态Z型光催化体系[J]. 化学进展, 2017, 29(8): 846-858.
[9] 沈晓骏, 黄攀丽, 文甲龙, 孙润仓. 木质素氧化还原解聚研究现状[J]. 化学进展, 2017, 29(1): 162-178.
[10] 姚臻, 戴博恩, 于云飞, 曹堃. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062-1069.
[11] 赵艳霞, 何圣贵. 异核氧化物团簇与小分子的反应研究[J]. 化学进展, 2016, 28(4): 401-414.
[12] 花东龙, 庄晓煜, 童东绅, 俞卫华, 周春晖. 催化甘油脱水氧化连串反应制丙烯酸[J]. 化学进展, 2016, 28(2/3): 375-390.
[13] 杨越, 刘琪英, 蔡炽柳, 谈金, 王铁军, 马隆龙. 木质纤维素催化转化制备DMF和C5/C6烷烃[J]. 化学进展, 2016, 28(2/3): 363-374.
[14] 谢利娟, 石晓燕, 刘福东, 阮文权. 菱沸石在柴油车尾气NOx催化净化中的应用[J]. 化学进展, 2016, 28(12): 1860-1869.
[15] 王亚军, 李泽雪, 于海洋, 冯长根. 亚稳态分子间复合物反应机理研究[J]. 化学进展, 2016, 28(11): 1689-1704.