English
新闻公告
More
化学进展 2012, Vol. 24 Issue (06): 1199-1213 前一篇   后一篇

• 量子化学专辑 •

分子模拟中的增强抽样方法

杨立江1, 邵强2, 高毅勤*1   

  1. 1. 北京大学化学与分子工程学院 北京 1000871;
    2. 中国科学院上海药物研究所 上海 201203
  • 收稿日期:2011-11-01 修回日期:2012-02-01 出版日期:2012-06-24 发布日期:2012-05-11
  • 通讯作者: 高毅勤 E-mail:gaoyq@pku.edu.cn
  • 基金资助:

    国家自然科学基金(No. 91027044; 21003004)资助

Enhanced Sampling Method in Molecular Simulations

Yang Lijiang1, Shao Qiang2, Gao Yiqin1   

  1. 1. College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
    2. Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China
  • Received:2011-11-01 Revised:2012-02-01 Online:2012-06-24 Published:2012-05-11
分子模拟在化学、物理、生物、材料等多学科的发展中起着越来越重要的作用。然而,受到当前计算机处理速度的限制,分子模拟计算所能够达到的时间尺度同实验或实际应用中要求的时间尺度相比还存在着巨大的差距。增强抽样方法的发展和应用可以有效地拓宽分子模拟所能研究体系的时间尺度,极大地提高分子模拟的热力学和动力学计算能力。本文中先简单介绍增强抽样方法的发展以及几类增强抽样方法的优缺点,然后重点介绍了我们研究组所发展的温度积分抽样方法(Integrated Tempering Sampling, ITS)的基本思路及其在蛋白质折叠研究中的应用。文章最后总结了增强抽样方法发展的新需求,同时也对此研究方向的广阔发展前景进行了展望。
Molecular simulations play more and more important roles in the studies of chemistry, physics, biology and material sciences, etc. However, due to the limitations of the current computing power, there is still a huge gap between the timescale which can be reached in molecular simulations and that observed in the experiments. Applications of the enhanced sampling method can effectively extend the timescale being approached, so that it improves greatly the thermodynamics and kinetics calculation ability of the molecular simulations. In this paper, the developments and comparisons of the different enhanced sampling methods are introduced briefly, and then the integrated tempering enhanced sampling method (ITS) and its applications to the protein folding simulations are presented in details. At last, the new challenges and prospects in the field of the enhanced sampling methods' development and application are summarized. Contents
1 Introduction
2 Enhanced sampling in the energy and configuration space based on the integrated tempering method
3 Applications: thermodynamics studies of protein folding
4 Future developments
5 Summaries

中图分类号: 

()
[1] Torrie G M, Valleau J P. Journal of Computational Physics, 1977, 23: 187-199
[2] Bartels C, Karplus M. J. Phys. Chem. B, 1998, 102: 865-880
[3] Zwanzig R W. J. Chem. Phys., 1954, 22: 1420-1426
[4] Kirkwood J G. J. Chem. Phys., 1935, 3: 300-313
[5] Schlitter J, Klahn M. J. Chem. Phys., 2003, 118: 2057-2060
[6] Sprik M, Ciccotti G. J. Chem. Phys., 1998, 109: 7737-7744
[7] Knight J L, Brooks C L. Journal of Computational Chemistry, 2009, 30: 1692-1700
[8] Grubmuller H. Phys. Rev. E, 1995, 52: 2893-2906
[9] Jensen M O, Park S, Tajkhorshid E, Schulten K. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 6731-6736
[10] Hummer G, Szabo A. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 3658-3661
[11] Hummer G, Szabo A. Biophysical Journal, 2003, 85: 5-15
[12] Rosso L, Minary P, Zhu Z W, Tuckerman M E. J. Chem. Phys., 2002, 116: 4389-4402
[13] Rosso L, Tuckerman M E. Molecular Simulation, 2002, 28: 91-112
[14] Laio A, Gervasio F L. Rep. Prog. Phys., 2008, 71: art.no.126601
[15] Bussi G, Laio A, Parrinello M. Phys. Rev. Lett., 2006, 96: art. no. 090601
[16] Biarnes X, Ardevol A, Planas A, Rovira C, Laio A, Parrinello M. J. Am. Chem. Soc., 2007, 129: 10686-10693
[17] Gervasio F L, Laio A, Parrinello M. J. Am. Chem. Soc., 2005, 127: 2600-2607
[18] Karamertzanis P G, Raiteri P, Parrinello M, Leslie M, Price S L. J. Phys. Chem. B, 2008, 112: 4298-4308
[19] Laio A, Rodriguez-Fortea A, Gervasio F L, Ceccarelli M, Parrinello M. J. Phys. Chem. B, 2005, 109: 6714-6721
[20] Mart.onak R, Donadio D, Oganov A R, Parrinello M. Phys. Rev. B, 2007, 76:art.no.014120
[21] Mart.onak R, Laio A, Bernasconi M, Ceriani C, Raiteri P, Zipoli F, Parrinello M. Z. Kristallogr., 2005, 220: 489-498
[22] Mart.onak R, Laio A, Parrinello M. Phys. Rev. Lett., 2003, 90:art.no.075503
[23] Michel C, Laio A, Mohamed F, Krack M, Parrinello M, Milet A. Organometallics, 2007, 26: 1241-1249
[24] Prestipino S, Giaquinta P V. J. Chem. Phys., 2008, 128:art.no.114707
[25] Voter A F. Phys. Rev. Lett., 1997, 78: 3908-3911
[26] Voter A F. J. Chem. Phys., 1997, 106: 4665-4677
[27] Hamelberg D, Mongan J, McCammon J A. J. Chem. Phys., 2004, 120: 11919-11929
[28] Hamelberg D, McCammon J A. J. Am. Chem. Soc., 2005, 127: 13778-13779
[29] Hamelberg D, Shen T, McCammon J A. J. Chem. Phys., 2005, 122: art. no 241103
[30] Gao Y Q, Yang L J. J. Chem. Phys., 2006, 125: art. no. 114103
[31] Yang L J, Grubb M P, Gao Y Q. J. Chem. Phys., 2007, 126: art. no. 125102
[32] Fu X B, Yang L J, Gao Y Q. J. Chem. Phys., 2007, 127: art. no.154106
[33] Gao Y Q, Yang L J, Fan Y B, Shao Q. International Reviews in Physical Chemistry, 2008, 27: 201-227
[34] Mu Y, Gao Y Q. J. Chem. Phys., 2007, 127: art. no. 105102
[35] Yang L J, Shao Q, Gao Y Q. J. Phys. Chem. B, 2009, 113: 803-808
[36] Tsallis C. J. Stat. Phys., 1988, 52: 479-487
[37] Nakajima N, Nakamura H, Kidera A. J. Phys. Chem. B, 1997, 101: 817-824
[38] Wang F G, Landau D P. Physical Review E, 2001, 64: art. no. 056101
[39] Wang F G, Landau D P. Phys. Rev. Lett., 2001, 86: 2050-2053
[40] Mitsutake A, Okamoto Y. Chemical Physics Letters, 2000, 332: 131-138
[41] Sugita Y, Okamoto Y. Chemical Physics Letters, 1999, 314: 141-151
[42] Kumar S, Bouzida D, Swendsen R H, Kollman P A, Rosenberg J M. Journal of Computational Chemistry, 1992, 13: 1011-1021
[43] Chodera J D, Swope W C, Pitera J W, Seok C, Dill K A. J. Chem. Theory. Comput., 2007, 3: 26-41
[44] Liu P, Kim B, Friesner R A, Berne B J. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 13749-13754
[45] Huang X H, Hagen M, Kim B, Friesner R A, Zhou R H, Berne B J. J. Phys. Chem. B, 2007, 111: 5405-5410
[46] Gao Y Q. J. Chem. Phys., 2008, 128: art. no. 064105
[47] Gao Y Q. J. Chem. Phys., 2008, 128: art. no. 134111
[48] Yang L J, Gao Y Q. J. Chem. Phys., 2009, 131:art.no.214109
[49] Hwang S, Shao Q, Williams H, Hilty C, Gao Y Q. J. Phys. Chem. B, 2011, 115: 6653-6660
[50] Shao Q, Gao Y Q. J. Chem. Phys., 2011, 135: art. no. 135102
[51] Shao Q A, Gao Y Q. J. Chem. Theory Comput., 2010, 6: 3750-3760
[52] Yang L J, Shao Q, Gao Y Q. J. Chem. Phys., 2009, 130: art. no. 124111
[53] Mills G, Jonsson H. Phys. Rev. Lett., 1994, 72: 1124-1127
[54] Dellago C, Bolhuis P G, Csajka F S, Chandler D. J. Chem. Phys., 1998, 108: 1964-1977
[55] Bolhuis P G, Dellago C, Chandler D. Faraday Discussions, 1998, 421-436
[56] Dellago C, Bolhuis P G, Chandler D. J. Chem. Phys., 1999, 110: 6617-6625
[57] Bolhuis P G, Chandler D, Dellago C, Geissler P L. Annual Review of Physical Chemistry, 2002, 53: 291-318
[58] Majek P, Elber R. J. Chem. Theory Comput., 2010, 6: 1805-1817
[59] Goedert M, Spillantini M G. Science, 2006, 314: 777-781
[60] Bellotti V, Nuvolone M, Giorgetti S, Obici L, Palladini G, Russo P, Lavatelli F, Perfetti V, Merlini G. Ann. Med., 2007, 39: 200-207
[61] Shao Q, Yang L J, Gao Y Q. J. Chem. Phys., 2009, 130: art. no. 195104
[62] Yang L, Shao Q, Gao Y Q. J. Phys. Chem. B, 2009, 113: 803-808
[63] Shao Q A, Wei H Y, Gao Y Q. J. Mol. Biol., 2010, 402: 595-609
[64] Du D G, Tucker M J, Gai F. Biochemistry-US, 2006, 45: 2668-2678
[65] Du D G, Zhu Y J, Huang C Y, Gai F. P. Natl. Acad. Sci. USA, 2004, 101: 15915-15920
[66] Gouda H, Torigoe H, Saito A, Sato M, Arata Y, Shimada I. Biochemistry-US, 1992, 31: 9665-9672
[67] Bai Y W, Karimi A, Dyson H J, Wright P E. Protein Sci., 1997, 6: 1449-1457
[68] Wei H Y, Fan Y B, Gao Y Q. J. Phys. Chem. B, 2010, 114: 557-568
[69] Wei H Y, Shao Q A, Gao Y Q. Physical Chemistry Chemical Physics, 2010, 12: 9292-9299
[1] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[2] 任彦荣, 田菲菲, 周鹏*. 计算肽学[J]. 化学进展, 2012, (9): 1674-1682.
[3] 闫燕, 杨启炜, 邢华斌*, 苏宝根, 任其龙. 离子液体表/界面性质与结构[J]. 化学进展, 2012, 24(05): 659-673.
[4] 林英武. 计算机辅助蛋白质分子理性设计:从肌红蛋白到一氧化氮还原酶[J]. 化学进展, 2012, 24(05): 784-789.
[5] 郑燕升, 卓志昊, 莫倩, 李军生. 离子液体的分子模拟与量化计算[J]. 化学进展, 2011, 23(9): 1862-1870.
[6] 王明华 王剑平. 分子模拟在生物传感器研究中的应用[J]. 化学进展, 2010, 22(05): 845-851.
[7] 何淑漫 周健. 抗凝血生物材料*[J]. 化学进展, 2010, 22(04): 760-772.
[8] 章爱娟,谢韵,周健. 蛋白质界面取向的实验控制与表征* [J]. 化学进展, 2009, 21(0708): 1408-1417.
[9] 张阳,杨基础,于养信,李以圭. 分子模拟在超临界流体领域中的应用[J]. 化学进展, 2005, 17(06): 955-962.
[10] 曹斌,高金森,徐春明. 分子模拟技术在石油相关领域的应用[J]. 化学进展, 2004, 16(02): 291-.
[11] 杨频,宋宇飞. 金属配合物键合DNA的研究进展*[J]. 化学进展, 2000, 12(01): 32-.
[12] 蒋华良,胡增建,陈建忠,顾健德,朱维良,陈凯先,嵇汝运. 配体-受体相互作用的计算机模拟及其在药物设计中的应用[J]. 化学进展, 1998, 10(04): 427-.
[13] 李以圭,李春喜. 电解质溶液的分子热力学模型研究进展[J]. 化学进展, 1996, 8(02): 155-.
阅读次数
全文


摘要

分子模拟中的增强抽样方法