English
新闻公告
More
化学进展 2012, Vol. 24 Issue (06): 1153-1165 前一篇   后一篇

所属专题: 计算化学

• 量子化学专辑 •

基于量子波包方法的态-态分辨反应散射动力学计算

孙志刚*, 张东辉*   

  1. 中国科学院大连化学物理研究所 大连 116023
  • 收稿日期:2011-11-01 修回日期:2012-02-01 出版日期:2012-06-24 发布日期:2012-05-11
  • 通讯作者: 孙志刚, 张东辉 E-mail:zsun@dicp.ac.cn;zhangdh@dicp.ac.cn
  • 基金资助:

    国家自然科学基金项目(No. 21133006, No. 21103187)资助

State-to-State Reactive Scattering by Quantum Wavepacket Method

Sun Zhigang, Zhang Donghui   

  1. Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
  • Received:2011-11-01 Revised:2012-02-01 Online:2012-06-24 Published:2012-05-11
本文回顾了最近十几年利用量子波包方法研究气相分子反应散射动力学的工作进展,特别是在态-态分辨水平上的工作进展。比较详细地讨论了目前存在的利用量子波包方法计算态-态微分截面的几种方法。目前态-态分辨的波包动力学计算可以精确地预测三原子和四原子分子反应散射的各种信息,文章最后对几个典型的利用波包方法在态-态分辨水平上研究过的三原子和四原子反应散射体系做了讨论。
The studies of gaseous reactive scattering dynamics by quantum wave packet method, especially at product-states resolved level, are reviewed. The current numerical methods for extracting product-states resolved attributives using quantum wave packet method are discussed. This theory now can present detailed and accurate predictions on the dynamics and kinetics of reactions containing three or four atoms. Several typical reactive scattering systems which have been studied using quantum wave packet method at product-states resolved level are briefed. Contents
1 Introduction
2 Brief review of historical development of quantum wave packet method applications in reactive scattering field
3 Theoretical methods of quantum wave packet
3.1 Discrete variable representation
3.2 Construction of initial wave packet and S-matrix extraction
3.3 Popular propagators
4 Theoretical methods for extraction product-states resolved information using quantum wave packet method
4.1 Product Jacobi coordinate based method
4.2 Reactant Jacobi coordinate based method
4.3 Reactant product-decoupling method
5 Typical reactive scattering systems studied by quantum wave packet method at product-states resolved level
5.1 Typical triatomic molecules reactive scattering
5.2 Typical tetraatomic molecules reactive scattering
6 Conclusions and outlook

中图分类号: 

()
[1] Schrodinger E. Annu. Phys., 1926, 79: 489-501
[2] Ehrenfest P. Z. Phys., 1927, 45: 455-460
[3] Kosloff R. J. Phys. Chem., 1988, 92: 2087-2100
[4] Heller E J. J. Chem. Phys., 1975, 62: 1544-1555
[5] Drolshagen G, Heller E J. J. Chem. Phys., 1983, 79: 2072-2082
[6] Lee S Y, Heller E J. J. Chem. Phys., 1979, 71: 4777-4788
[7] Kosloff R. Ann. Rev. Phys. Chem., 1994, 45: 145-178
[8] Light J C, Hamilton I P, Lill J V. J. Chem. Phys., 1985, 82: 1400-1409
[9] Feit M D, Fleck J A, Steiger A. J. Comput. Phys., 1982, 47: 412-433
[10] Tal-Ezer H, Kosloff R. J. Chem. Phys., 1984, 81: 3967-3971
[11] Zewail A H. J. Phys. Chem. A, 2000, 104: 5660-5694
[12] Garraway B M, Suominen K A. Rep. Prog. Phys., 1995, 58: 365-419
[13] Mowrey R C, Kouri D J. J. Chem. Phys., 1986, 84: 6466-6473
[14] Xiao C L, Xu X, Liu S, Wang T, Dong W R, Yang T G, Sun Z G, Dai D X, Xu X, Zhang D H, Yang X M. Science, 2011, 333: 440-442
[15] McCullough E A, Wyatt R E. J. Chem. Phys., 1971, 54: 3578-3592
[16] Kosloff R, Kosloff D. J. Chem. Phys., 1983, 79: 1823-1833
[17] Neuhauser D, Baer M, Judson R S, Kouri D. J. Chem. Phys., 1990, 93: 312-321
[18] Neuhauser D, Judson R S, Jaffe R L, Baer M, Kouri D J. Chem. Phys. Lett., 1991, 176: 546-550
[19] Neuhauser D. J. Chem. Phys., 1994, 100: 9272-9275
[20] Zhang D H, Zhang J Z H J. Chem. Phys., 1994, 101: 1146-1156
[21] Zhang D H, Collins M A, Lee S Y. Science, 2000, 290: 961-963
[22] Pogrebnya S K, Echave J, Clary D C. J. Chem. Phys., 1997, 107: 8975-8984
[23] Yang M H.J. Chem. Phys., 2008, 129: art.no.064315
[24] Yang M H, Lee S Y, Zhang D H. J. Chem. Phys., 2007, 126: art.no.064303
[25] Zhou Y, Fu B N, Wang C R, Collins M A, Zhang D H. J. Chem. Phys., 2011, 134: art.no.024323
[26] Zhou Y, Wang C R, Zhang D H. J. Chem. Phys., 2011, 135: art.no.024313
[27] Zhang W Q, Zhou Y, Wu G R, Lu Y P, Pan H L, Fu B N, Shuai Q, Liu L, Liu S, Zhang L L, Jiang B, Dai D X, Lee S Y, Xie Z, Braams B J, Collins M A, Zhang D H, Yang X M. P. Natl. Acad. Sci. USA, 2010, 107: 12782-12785
[28] Judson R S, Kouri D J, Neuhauser D, Baer M. Phys. Rev. A, 1990, 42: 451-366
[29] Peng T, Zhang Z H. J. Chem. Phys., 1996, 105: 6072-6074
[30] Althorpe S C. J. Chem. Phys., 2001, 114: 1601-1616
[31] Yuan K J, Cheng Y, Liu X H, Harich S, Zhang D H, Yang X M. Phys. Rev. Lett., 2006, 96: art.no.103202
[32] Lin S Y, Guo H. Phys. Rev. A, 2006, 74: art.no.022703
[33] Hankel M, Smith S C, Allan R J, Gray S K, Balint-Kurti G G. J. Chem. Phys., 2006, 125: art.no.164303
[34] Sun Z G, Lin X, Lee S Y, Zhang D H. J. Phys. Chem. A, 2009, 113: 4145-4154
[35] Sun Z G, Zhang D H, Xu CX, Zhou S L, Xie D Q, Lendvay G, Lee SY, Lin S Y, Guo H. J. Am. Chem. Soc., 2008, 130: 14962-14963
[36] Sun Z G, Liu L, Lin S Y, Schinke R, Guo H, Zhang D H. P. Natl. Acad. Sci. USA, 2010, 107: 555-558
[37] Zhang D H, Light J C. J. Chem. Phys., 1996, 105: 1291-1294
[38] Zhu W, Dai J Q, Zhang J Z H, Zhang D H. J. Chem. Phys., 1996, 105: 4881-4884
[39] Zhang D H, Xie D Q, Yang M H, Lee S Y. Phys. Rev. Lett., 2002, art.no.89: 283203
[40] Zhang D H. J. Chem. Phys., 2006, 125: art.no.133102
[41] Liu S, Xu X, Zhang D H. J. Chem. Phys., 2011, 135: art.no.141108
[42] Cvitas M T, Althorpe S C. J. Chem. Phys., 2011, 134: art.no.024309
[43] Chu T S, Han K L, Hankel M, Balint-Kurti G G, Kuppermann A, Abrol R. J. Chem. Phys., 2010, 130: art.no.144301
[44] Sun Z G, Zhang D H, Alexander M H. J. Chem. Phys., 2010, 132: art.no.084112
[45] Lin S Y, Guo H, Jiang B, Zhou S L, Xie D Q. J. Phys. Chem. A, 2010, 114: 9655-9661
[46] Light J C, Carrington T Jr. Adv. Chem. Phys., 2007, 114: 263-310
[47] Kroes G J, Neuhauser D. J. Chem. Phys., 1996, 105: 8690-8698
[48] Bandrauk A D, Shen H. J. Chem. Phys., 1993, 99: 1185-1193
[49] Blanes S, Moan P C. J. Comput. Appl. Math., 2002, 142: 313-330
[50] Sun Z G, Guo H, Zhang D H. J. Chem. Phys., 2009, 130: art.no.174102
[51] Sun Z G, Yang W T, Zhang D H. Phys. Chem. Chem. Phys. 2012, 14: 1827-1845
[52] Chen R Q, Guo H. J. Chem. Phys., 1996, 105: 3569-3578
[53] Gray SK, Balint-Kurti G G. J. Chem. Phys. 1998, 108: 950-962
[54] Fu B N, Zhang D H. J. Phys. Chem. A, 2007, 111: 9516-9521
[55] Dai J Q, Zhang J Z H. J. Phys. Chem. A, 1996, 100: 6898-6903
[56] Tannor D J, Week D E. J. Chem. Phys., 1993, 98: 3884-3893
[57] G髆ez-Carrasco S, Roncero O. J. Chem. Phys. 2006, 125: art.no.054102
[58] Zhang D H, Zhang J Z H. J. Chem. Phys., 1994, 101: 3671-3678
[59] Sun Z G, Guo H, Zhang D H. J. Chem. Phys. 2010, 132: 084112
[60] Althorpe S C, Kouri D J, Hoffman D K. J. Chem. Phys., 1997, 107: 7816-7824
[61] Sun Z G, Liu S, Zhang D H. J. Chem. Phys. To be submitted.
[62] Skouteris D, Castillo J F, Manolopoulos D E. Comp. Phys. Comm., 2000, 133: 128-135
[63] Launay J M. Theoretica Chimica Acta. 1991, 79: 183-190
[64] Dobbyn A J, Knowles P J.Faraday Discuss. 1998, 110: 247
[65] Xu C X, Xie D Q, Zhang D H, Lin S Y, Guo H. J. Chem. Phys., 2005, 122: art.no.2443054
[66] Gao Y Q, Marcus R A. Science, 2001, 293: 259-263
[67] Zhang D H, Zhang J Z H. J. Chem. Phys., 1999, 110: 7622-7626
[68] Tully J C. J. Chem. Phys., 1974, 60: 3042-3050
[69] Alexander M H, Manolopoulos D E, Werner H J. J. Chem. Phys., 2000, 113: 11084-11100
[70] Lee S H, Liu K P.J. Chem. Phys. 1999, 111: 6253-6259
[71] Alexander M H, Capecchi G, Werner H J. Science, 2002, 296: 715-718
[72] Wang X A, Dong W R, Xiao C L, Che L, Ren Z F, Dai D X, Wang X Y, Casavecchia P, Yang X M, Jiang B, Xie D Q, Sun Z G, Lee S Y, Zhang D H, Werner W J, Amlexander M H. Science, 2008, 322: 573-576
[1] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[2] 吉琳*, 闫欣平. 介观生化反应的随机和混合模拟算法[J]. 化学进展, 2013, 25(06): 893-899.
[3] 马广璐, 庄大为, 戴洪斌, 王平. 铝/水反应可控制氢[J]. 化学进展, 2012, 24(04): 650-658.
[4] 李云涛,钟秦. 低温NH3-SCR反应机理及动力学研究进展*[J]. 化学进展, 2009, 21(6): 1094-1100.
[5] 帅志刚. 理论化学研究进展以及在可持续发展中的应用*[J]. 化学进展, 2009, 21(11): 2259-2270.
[6] 梁艳 王平 戴洪斌. 硼氢化钠催化水解制氢*[J]. 化学进展, 2009, 21(10): 2219-2228.
[7] 于昂扬. 化学反应中的几何相效应[J]. 化学进展, 2008, 20(0203): 208-211.
[8] 戴东旭,杨学明. 基元化学反应态态动力学研究*[J]. 化学进展, 2007, 19(11): 1633-1645.
[9] 王华阳,孙孝敏,蔡政亭,冯大诚. 化学反应散射共振态的实验检测与理论模拟*[J]. 化学进展, 2006, 18(01): 1-6.
[10] 胡英,刘洪来. 分子工程和化学工程[J]. 化学进展, 1995, 7(03): 235-.
[11] 何国钟. 分子反应动力学如何走向21世纪[J]. 化学进展, 1994, 6(04): 257-.