English
新闻公告
More
化学进展 2012, Vol. 24 Issue (06): 1120-1128 前一篇   后一篇

• 量子化学专辑 •

小分子光解动力学的理论研究

蒋彬, 谢代前*   

  1. 南京大学化学化工学院 理论与计算化学研究所 南京 210093
  • 收稿日期:2011-11-01 修回日期:2012-03-01 出版日期:2012-06-24 发布日期:2012-05-11
  • 通讯作者: 谢代前 E-mail:dqxie@nju.edu.cn
  • 基金资助:

    国家自然科学基金项目(Nos. 21133006, 91021010, 20725312)资助

Theoretical Studies for Photodissociation Dynamics of Small Molecules

Bin Jiang, Daiqian Xie   

  1. Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
  • Received:2011-11-01 Revised:2012-03-01 Online:2012-06-24 Published:2012-05-11
光解过程是化学中的核心问题之一。量子态分辨的光解动力学可以使人们在原子与分子的层次上深刻理解光解反应的机制。态-态水平的光解动力学在过去四十年中取得了长足的进步,实验和理论的相 互结合极大地促进了我们对光解反应本质的认识。本文综述了小分子态-态光解动力学的理论研究进展,总结了H2O和CH3I这两个最具代表性体系的态-态光解动力学研究成果,并提出了该领域未来面临的挑战。
Photodissociation is one of the key issues in chemistry. Quantum state resolved photodissociation dynamics provides us the remarkable understanding for the photodissociation reaction mechanism at the atomic and molecular level. Our knowledge about the nature of the photodissociation process is largely enriched with the combination of experimental and theoretical studies and great advances have been achieved for the state-to-state photodissociation dynamics in the last 40 years. This article reviews the progress in theoretical studies for state-to-state photodissociation dynamics of small molecules and summarizes the photodissociation dynamics for H2O and CH3I. Finally, the open questions and challenges in this field are also addressed. Contents
1 Introduction
2 General theory of state-to-state photodissociation dynamics
3 Photodissociation dynamics for H2O: adiabatic versus nonadiabatic pathway
4 Photodissociation dynamics for CH3I: spin-orbit Coupling and multiple pathway dissociation
5 Conclusions and outlook

中图分类号: 

()
[1] Lee Y P. Annu. Rev. Phys. Chem., 2003, 54: 215-244
[2] Butler L J, Neumark D M. J. Phys. Chem., 1996, 100: 12801-12816
[3] Yang X. Int. Rev. Phys. Chem., 2005, 24: 37-98
[4] Zare R N, Dagdigian P J. Science, 1974, 185: 739-747
[5] Ashfold M N R, Howe J D. Annu. Rev. Phys. Chem., 1994, 45: 57-82
[6] Chandler D W, Houston P L. J. Chem. Phys., 1987, 87: 1445-1447
[7] Parker D H, Eppink A T J B. J. Chem. Phys., 1997, 107: 2357-2362
[8] Schnieder L, Meier W, Welge K H, Ashfold M N R, Western C M. J. Chem. Phys., 1990, 92: 7027-7037
[9] Lai L H, Wang J H, Che D C, Liu K. J. Chem. Phys., 1996, 105: 3332-3335
[10] Che D C, Liu K. J. Chem. Phys., 1995, 103: 5164-5167
[11] Sato H. Chem. Rev., 2001, 101: 2687-2725
[12] Balint-Kurti G G. In International Review of Science, Series II(Buckingham A D, Coulson C A. Eds). Butterworths: London, 1975, 286-326
[13] Shapiro M. J. Chem. Phys., 1972, 56: 2582-2591
[14] Heller E J. J. Chem. Phys., 1978, 68: 2066-2075
[15] Kulander K C, Heller E J. J. Chem. Phys., 1978, 69: 2439-2449
[16] Band Y B, Freed K F, Kouri D J. J. Chem. Phys., 1981, 74: 4380-4394
[17] Kosloff D, Kosloff R. J. Comput. Phys., 1983, 52: 35-53
[18] Light J C, Hamilton I P, Lill J V. J. Chem. Phys., 1985, 82: 1400-1409
[19] Balint-Kurti G G, Dixon R N, Marston C C. J. Chem. Soc. Faraday Trans., 1990, 86: 1741-1749
[20] Zhang D H, Wu Q, Zhang J Z H. J. Chem. Phys., 1995, 102: 124-132
[21] Guo H. J. Chem. Phys., 1998, 108: 2466-2472
[22] Balint-Kurti G G. Adv. Chem. Phys.,2004, 128: 249-301
[23] Kosloff R. J. Phys. Chem., 1988, 92: 2087-2100
[24] Meyer H D, Manthe U, Cederbaum L S. Chem. Phys. Lett., 1990, 165: 73-78
[25] Manthe U, Meyer H D, Cederbaum L S. J. Chem. Phys., 1992, 97: 3199-3213
[26] Evenhuis C R, Manthe U. J. Phys. Chem. A, 2011, 115: 5992-6001
[27] Schinke R. Photodissociation Dynamics, Cambridge University Press: Cambridge, 1993. 1-417
[28] Lai W Z, Lin S Y, Xie D Q, Guo H. J. Chem. Phys., 2008, 129:art.no. 154311
[29] Lai W Z, Lin S Y, Xie D Q, Guo H. J. Phys. Chem. A, 2010, 114: 3121-3126
[30] Jiang B, Xie D Q, Guo H. J. Chem. Phys., 2011, 134: art.no.231103
[31] Balint-Kurti G G. Inter. Rev. Phys. Chem., 2008, 27: 507-539
[32] Heller E J. Acc. Chem. Res., 1981, 14: 368-375
[33] Feit M D, Fleck J A. J. Chem. Phys., 1984, 80: 2578-2584
[34] Talezer H, Kosloff R. J. Chem. Phys., 1984, 81: 3967-3971
[35] Park T J, Light J C. J. Chem. Phys., 1986, 85: 5870-5876
[36] Liu X, Bian W, Zhao X, Tao X. J. Chem. Phys., 2006, 125: art.no.074306
[37] Liu Y J, Tian Y C, Fang W H. J. Chem. Phys., 2008, 128: art.no. 064307
[38] Liu Y J, Vico L D, Lindh R, Fang W H. ChemPhyschem, 2007, 8: 890-898
[39] 戴东旭 (Dai D X), 杨学明 (Yang X M). 化学进展(Progress in Chemistry), 2007, 19: 1633-1645
[40] Mota R, Parafita R, Giuliani A, Hubin-Franskin M J, Lourenco J M C, Garcia G, Hoffmann S V, Mason N J, Ribeiro P A, Raposo M, Limao-Vieira P. Chem. Phys. Lett., 2005, 416: 152-159
[41] Andresen P, Ondrey G S, Titze B, Rothe E W. J. Chem. Phys., 1984, 80: 2548-2569
[42] Mikulecky K, Gericke K H, Comes F J. Chem. Phys. Lett., 1991, 182: 290-296
[43] Andresen P, Beushausen V, Hausler D, Lulf H W, Rothe E W. J. Chem. Phys., 1985, 83: 1429-1430
[44] Vanderwal R L, Scott J L, Crim F F. J. Chem. Phys., 1991, 94: 1859-1867
[45] Schinke R, Vanderwal R L, Scott J L, Crim F F. J. Chem. Phys., 1991, 94: 283-288
[46] Schinke R, Engle V, Andresen P, Hausler D, Balintkurti G G. Phys. Rev. Lett., 1985, 55: 1180-1183
[47] Balintkurti G G. J. Chem. Phys., 1985, 84: 4443-4454
[48] Schinke R, Engel V, Staemmler V. J. Chem. Phys., 1985, 83: 4522-4533
[49] Engel V, Schinke R, Staemmler V. J. Chem. Phys., 1988, 88: 129-148
[50] Engel V, Staemmler V, Vander Wal R L, Crim F F, Sension R J, Hudson B, Andresen P, Hennig S, Weide K, Schinke R. J. Phys. Chem., 1992, 96: 3201-3213
[51] Hwang D W, Yang X F, Yang X M. J. Chem. Phys., 1999, 110: 4119-4122
[52] Harrevelt R V, Hemert M C v. J. Chem. Phys., 2001, 114: 9453-9462
[53] Mordaunt D H, Ashfold M N R, Dixon R N. J. Chem. Phys., 1994, 100: 7360-7375
[54] Dixon R N, Hwang D W, Yang X F, Harich S, Lin J J, Yang X. Science, 1999, 285: 1249-1253
[55] Harich S A, Yang Y F, Yang X M. Phys. Rev. Lett., 2001, 87: 253201-253204
[56] Harich S A, Yang X F, Yang X, van Harrevelt R, van Hemert M C. Phys. Rev. Lett., 2001, 87: 263001-263004
[57] van Harrevelt R, van Hemert M C, Schatz G C. J. Phys. Chem. A, 2001, 105: 11480-11487
[58] Cheng Y A, Yuan K J, Cheng L N, Guo Q, Dai D X, Yang X M. J. Chem. Phys., 2011, 134: art.no. 064301
[59] Yuan K J, Cheng Y, Cheng L, Guo Q, Dai D X, Wang X Y, Yang X M, Dixon R N. Proc. Natl. Acad. Sci. USA, 2008, 105: 19148-19153
[60] Yuan K J, Cheng L N, Cheng Y, Guo Q, Dai D X, Yang X M. J. Chem. Phys., 2009, 131: 074301
[61] Yuan K, Dixon R N, Yang X. Acc Chem Res., 2011, 44: 369-378
[62] Harrevelt R V, Hemert M C v. J Chem Phys., 2000, 112: 5787-5808
[63] Pence W H, Baughcum S L, Leone S R. J. Phys. Chem., 1981, 85: 3844-3851
[64] Mulliken R S. J. Chem. Phys., 1940, 8: 382-395
[65] Baughcum S L, Leone S R. J. Chem. Phys., 1980, 72: 6531-6545
[66] Riley S J, Wilson K R. Faraday Discuss., 1972, 53: 132-146
[67] Li G, Shin Y K, Hwang H J. J. Phys. Chem. A, 2005, 109: 9226-9231
[68] Hermann H W, Leone S R. J. Chem. Phys., 1982, 76: 4766-4774
[69] Eppink A T J B, Parker D H. J. Chem. Phys., 1998, 109: 4758-4767
[70] Eppink A T J B, Parker D H. J. Chem. Phys., 1999, 110: 832-844
[71] Black J F, Powis I. J. Chem. Phys., 1988, 89: 3986-3992
[72] Zhong D P, Cheng P Y, Zewail A H. J. Chem. Phys., 1996, 105: 7864-7867
[73] Imre D, Kinsey J L, Sinha A, Krenos J. J. Phys. Chem., 1984, 88: 3956-3964
[74] Shapiro M, Bersohn R. J. Chem. Phys., 1980, 73: 3810-3817
[75] Guo H, Schatz G C. Journal of Chemical Physics, 1990, 93: 393-402
[76] Guo H, Lao K Q, Schatz G C, Hammerich A D. J. Chem. Phys., 1991, 94: 6562-6568
[77] Guo H. J. Chem. Phys., 1992, 96: 6629-6642
[78] Hammerich A D, Manthe U, Kosloff R, Meyer H D, Cederbaum L S. J. Chem. Phys., 1994, 101: 5623-5646
[79] Manthe U, Hammerich A D. Chem. Phys. Lett., 1993, 211: 7-14
[80] Amatatsu Y, Morokuma K, Yabushita S. J. Chem. Phys., 1991, 94: 4858-4876
[81] Amatatsu Y, Yabushita S, Morokuma K. J. Chem. Phys., 1996, 104: 9783-9794
[82] Xie D Q, Guo H, Amatatsu Y, Kosloff R. J. Phys. Chem. A, 2000, 104: 1009-1019
[83] Janssen M H M, Mastenbroek J W G, Stolte S. J. Phys. Chem. A, 1997, 101: 7605-7613
[84] Alekseyev A B, Liebermann H P, Buenker R J. J. Chem. Phys., 2007, 126: art.no. 234103
[85] Alekseyev A B, Liebermann H P, Buenker R J, Yurchenko S N. J. Chem. Phys., 2007, 126: art.no.234102
[86] Rubio-Lago L, Garcia-Vela A, Arregui A, Amaral G A, Banares L. J. Chem. Phys., 2009, 131: art.no. 174309
[87] Gonzalez M G, Rodriguez J D, Rubio-Lago L, Garcia-Vela A, Banares L. Phys. Chem. Chem. Phys., 2011, 13: 16404-16415
[88] Rubio-Lago L, Rodriguez J D, Garcia-Vela A, Gonzalez M G, Amaral G A, Banares L. Phys. Chem. Chem. Phys., 2011, 13: 8186-8194
[89] García-Vela A, Nalda R d, Durá J, González-Vázquez J, Baares L. J. Chem. Phys., 2011, 135: art.no. 154306
[90] Hess W P, Naaman R, Leone S R. J. Phys. Chem., 1987, 91: 6085-6087
[91] Continetti R E, Balko B A, Lee Y T. J. Chem. Phys., 1988, 89: 3383-3384
[92] Gilchrist A, Hancock G, Peverall R, Richmond G, Ritchie G A D, Taylor S. J. Phys. Chem. A, 2008, 112: 4531-4536
[93] Gitzinger G, Corrales M E, Loriot V, Amaral G A, de Nalda R, Banares L. J. Chem. Phys., 2010, 132: art.no.234313
[94] Gonzalez M G, Rodriguez J D, Rubio-Lago L, Banares L. J. Chem. Phys., 2011, 135: art.no.021102
[95] Donaldson D J, Child M S, Vaida V. J. Chem. Phys., 1988, 88: 7410-7417
[96] Alekseyev A B, Liebermann H P, Buenker R J. J. Chem. Phys., 2011, 134: art.no.044303
[97] de Nalda R, Izquierdo J G, Dura J, Banares L. J. Chem. Phys., 2007, 126: art.no. 021101
[98] Dura J, de Nalda R, Alvarez J, Izquierdo J G, Amaral G A, Banares L. ChemPhysChem, 2008, 9: 1245-1249
[99] Nalda R d, Dura J, Garcia-Vela A, Izquierdo J G, Gonzalez-Vazquez J, Banares L. J. Chem. Phys., 2008, 128: art.no.244309
[100] Dura J, de Nalda R, Amaral G A, Banares L. J. Chem. Phys., 2009, 131: art.no. 134311
[101] Garcia-Vela A, Banares L. Phys. Chem. Chem. Phys., 2011, 13: 2228-2236
[102] Vanderwal R L, Scott J L, Crim F F. J. Chem. Phys., 1990, 92: 803-805
[103] Brumer P, Shapiro M. Chem. Phys. Lett., 1986, 126: 541-546
[1] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[2] 雷一帆, 雷圣宾, 朴玲钰. 光催化氧气还原制备H2O2[J]. 化学进展, 2021, 33(1): 66-77.
[3] 黄池宝*, 陈绍英. 双光子荧光探针[J]. 化学进展, 2017, 29(10): 1215-1227.
[4] 张春芳, 马海涛, 边文生*. 化学反应的高精度从头算势能面[J]. 化学进展, 2012, 24(06): 1082-1093.
[5] 黄池宝, 易道生, 冯承浩, 任安祥, 孙世国. 双光子荧光探针[J]. 化学进展, 2010, 22(12): 2408-2419.
[6] 武素香 樊红雷 程燕 王前 韩布兴. CO2/H2O混合绿色介质中的有机催化反应*[J]. 化学进展, 2010, 22(07): 1286-1294.
[7] 王华阳,孙孝敏,蔡政亭,冯大诚. 化学反应散射共振态的实验检测与理论模拟*[J]. 化学进展, 2006, 18(01): 1-6.
[8] 童金辉 李臻 夏春谷. 环境友好催化氧化研究进展*[J]. 化学进展, 2005, 17(01): 96-110.
阅读次数
全文


摘要

小分子光解动力学的理论研究