English
新闻公告
More
化学进展 2012, Vol. 24 Issue (06): 1094-1104 前一篇   后一篇

• 量子化学专辑 •

离子液中溶剂化电子的结构及其演化动力学

步宇翔*   

  1. 山东大学化学与化工学院 理论化学研究所 济南 250100
  • 收稿日期:2012-01-01 修回日期:2012-03-01 出版日期:2012-06-24 发布日期:2012-05-11
  • 通讯作者: 步宇翔 E-mail:byx@sdu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20633060, 20973101)、教育部新世纪优秀人才支持计划及山东大学自主创新基金项目(No.2009JC020)资助

Structures and Time-Evolution Dynamics of Solvated Electron in Ionic Liquids

Bu Yuxiang   

  1. Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
  • Received:2012-01-01 Revised:2012-03-01 Online:2012-06-24 Published:2012-05-11
本文综述了离子型液体介质中过剩电子的结构、存在状态及其时间演化动力学特征。基于从头算分子动力学模拟及计算结果,重点阐述了咪唑型、吡啶型、碱金属离子型熔盐氯化物离子液中与过剩电子溶剂化密切相关的溶剂化能量学、结构特征、可能的存在状态以及态-态转化稳态动力学机制,分析了此类离子型介质中电子高效传导的内在本质及离子液组成离子的重要作用。阳离子的最低未占轨道组成的导带结构是离子液中过剩电子的溶剂化态及其稳定性的决定因素,任何能影响或改变其导带结构的因素均能显著影响过剩电子溶剂化。但快速的态-态转化及电子迁移并不明显取决于其组成离子扩散动力学,而是敏感地受离子液涨落所控制。这种基于溶剂化电子的迁移模式构成了此类离子型介质甚至其它液态介质中电子转移的新途径。
Structures, states and time-evolution dynamics of excess electron in ionic liquid medium are surveyed. On the basis of the ab initio calculations and molecular dynamics simulations, we discussed the solvation energetics, structural characters, possible existing states and state-to-state conversion mechanisms associated with solvation of excess electron in the imidazolium-type, the pyridinium-type, and the quaternary ammonium-type chloride room temperature ionic liquids, and a representative alkali-metal halide molten salt, and analyzed the nature of efficient conduction of electrons in such media and the important role of constituent ions of the ionic liquids. The conduction band structure consisted of the lowest unoccupied molecular orbital of the cations is a decisive factor in determining the solvated states and stability of the excess electron in ionic liquids, and any factors which affect or change the conduction band structure do considerably affect solvation of excess electron in ionic liquids. However, the rapid state-to-state conversion dynamics and electron migration do not sensitively depend on the diffusion dynamics of the constituent ions, but are controlled by ionic liquid fluctuation. This kind of solvated-electron-based electron migration mechanism provides a new electron transfer pathway in such ionic media or other liquid media. Contents
1 Introduction
2 Computation and molecular dynamics simulation methods
3 Electronic structure of ionic liquids
4 Presolvation state of excess electron
5 Time-evolution dynamics of solvated electron
6 Structures and properties of solvated electron
7 Conclusions and outlook

中图分类号: 

()
[1] Weyl W. Ann. Phys., 1864, 121: 606-612
[2] Hart E J, Boag J W. J. Am. Chem. Soc., 1962, 84: 4090-4095
[3] Kevan L. Acc. Chem. Res., 1981, 14: 138-145
[4] Klug D D. Science, 2001, 294: 2305-2306
[5] Jordan K D. Science, 2004, 306: 618-619
[6] Bragg A E, Verlet J R R, Kammrath A, Cheshnovsky O, Neumark D M. Science, 2004, 306: 669-671
[7] Paik D H, Lee I, Yang D, Baskin J S, Zewail A H. Science, 2004, 306: 672-675
[8] Hammer N I, Shin J, Headrick J M, Diken E G, Roscioli J R, Weddle G H, Johnson M A. Science, 2004, 306: 675-679
[9] Verlet J R R, Bragg A E, Kammrath A, Cheshnovsky O, Neumark D M. Science, 2005, 307: 93-96
[10] Turi L, Sheu W S, Rossky P J. Science, 2005, 309: 914-917
[11] Onda K, Li B, Zhao J, Jordan K D, Yang J, Petek H. Science, 2005, 308: 1154-1158
[12] Bragg A E, Cavanagh M C, Schwartz B J. Science, 2008, 321: 1817-1822
[13] Simon S H. Science, 2009, 324: 1022-1023
[14] Jordan K D, Johnson M A. Science, 2010, 329: 42-43
[15] Larsen R E, Glover W J, Schwartz B J. Science, 2010, 329: 65-69
[16] Siefermann K R, Liu Y, Lugovoy E, Link O, Faubel M, Buck U, Winter B, Abel B. Nat. Chem., 2010, 2: 274-279
[17] Nilsson A. Nat. Chem., 2010, 2: 800-802
[18] Herbert J M, Head-Gordon M. Proc. Natl. Acad. Sci. U. S. A., 2006, 103: 14282-14287
[19] Jordan K D, Wang F. Annu. Rev. Phys. Chem., 2003, 54: 367-396
[20] Nordlund D, Ogasawara H, Bluhm H, Takahashi O, Odelius M, Nagasono M, Pettersson L G M, Nilsson A. Phys. Rev. Lett., 2007, 99: art. no. 217406
[21] Zhao J, Li B, Onda K, Feng M, Petek H. Chem. Rev., 2006, 106: 4402-4427
[22] Ehrler O T, Neumark D M. Acc. Chem. Res., 2009, 42: 769-777
[23] Bu Y X. J. Shandong Univ. (Natural Science), 2011, 46(10): 152-159
[24] Sagar D M, Bain C D, Verlet J R R. J. Am. Chem. Soc., 2010, 132: 6917-6919
[25] Marsalek O, Uhlig F, Frigato T, Schmidt B, Jungwirth P. Phys. Rev. Lett., 2010, 105: art. no. 043002
[26] Chiesa M, Giamello E, Van Doorslaer S. J. Am. Chem. Soc., 2009, 131: 12664-12670
[27] Garrett B C, Dixon D A, Camaioni D M, et al. Chem. Rev., 2005, 105: 355-389
[28] Huels M A, Boudaffa B, Cloutier P, Hunting D, Sanche L. J. Am. Chem. Soc., 2003, 125: 4467-4477
[29] Herbert J M, Head-Gordon M. J. Am. Chem. Soc., 2006, 128: 13932-13939
[30] Glover W J, Larsen R E, Schwartz B J. J. Phys. Chem. Lett., 2009, 1: 165-169
[31] Koaski M, Lee H M, Pak C, Kim K S. J. Am. Chem. Soc., 2007, 130: 103-112
[32] Donald W A, Demireva M, Leib R D, Aiken M J, Williams E R. J. Am. Chem. Soc., 2010, 132: 4633-4640
[33] Baletto F, Cavazzoni C, Scandolo S. Phys. Rev. Lett., 2005, 95: art. no. 176801
[34] Zappa F, Denifl S, Mhr I, Bacher A, Echt O, Mrk T D, Scheier P. J. Am. Chem. Soc., 2008, 130: 5573-5578
[35] Sobhy M A, Casalenuovo K, Reveles J U, Gupta U, Khanna S N, Castleman A W. J. Phys. Chem. A, 2010, 114: 11353-11363
[36] Zurek E, Edwards P P, Hoffmann R. Angew. Chem. Int. Ed., 2009, 48: 8198-8232
[37] Muroya Y, Lin M Z, de Waele V, Hatano Y, Katsumura Y, Mostafavi M. J. Phys. Chem. Lett., 2010, 1: 331-335
[38] Jacobson L D, Herbert J M J. Am. Chem. Soc., 2010, 132: 10000-10002
[39] Prell J S, O'Brien J T, Holm A I S, Leib R D, Donald W A, Williams E R. J. Am. Chem. Soc., 2008, 130: 12680-12689
[40] Turecek F, Chen X H, Hao C T. J. Am. Chem. Soc., 2008, 130: 8818-8833
[41] Turecek F, Jones J W, Towle T, Panja S, Nielsen S B, Hvelplund P, Paizs B. J. Am. Chem. Soc., 2008, 130: 14584-14596
[42] Turecek F, Chung T W, Moss C L, Wyer J A, Ehlerding A, Holm A I S, Zettergren H, Nielsen S B, Hvelplund P, Chamot-Rooke J, Bythell B, la Paizs B. J. Am. Chem. Soc., 2010, 132: 10728-10740
[43] Simons J. J. Am. Chem. Soc., 2010, 132: 7074-7085
[44] Pan X, Cloutier P, Hunting D, Sanche L. Phys. Rev. Lett., 2003, 90: art. no. 208102
[45] Yan S H, Bu Y X, Cukier R I. J. Chem. Phys., 2006, 124: art. no. 124314
[46] Zhang L, Yan S H, Cukier R I, Bu Y X. J. Phys. Chem. B, 2008, 112: 3767-3772
[47] Wang Z P, Zhang L, Chen X H, Cukier R I, Bu Y X. J. Phys. Chem. B (Letters), 2009, 113: 8222-8226
[48] Wang Z P, Zhang L, Cukier R I, Bu Y X. PhysChemChemPhys, 2010, 12: 1854-1861
[49] Bu Y X. Frontiers of Chemistry in China, 2010, 5(3): 309-324
[50] Dye J L. Acc. Chem. Res., 2009, 42: 1564-1572
[51] Matsuishi S, Toda Y, Masashi M, Katsuro H, Toshio K, Hirano M, Tanaka I, Hosono H. Science, 2003, 301: 626-629
[52] Huang R H, Faber M K, Moeggenborg K J, Ward D L, Dye J L. Nature, 1988, 331: 599-601
[53] Singh D J, Krakauer H, Haas C, Pickett W E. Nature, 1993, 365: 39-42
[54] Miyakawa M, Kim S W, Hirano M, Kohama Y, Kawaji H, Atake T, Ikegami H, Kono K, Hosono H. J. Am. Chem. Soc., 2007, 129: 7270-7271
[55] Muhammad S, Xu H L, Liao Y, Kan Y H, Su Z M. J. Am. Chem. Soc., 2009, 131: 11833-11840
[56] Chen W, Li Z R, Wu D, Li Y, Sun C C, Gu F L. J. Am. Chem. Soc., 2005, 127: 10977-10981
[57] Xu H L, Li Z R, Wu D, Wang B Q, Li Y, Gu F L, Aoki Y. J. Am. Chem. Soc., 2007, 129: 2967-2970
[58] Chen W, Li Z R, Wu D, Li Y, Sun C C, Gu F L, Aoki Y. J. Am. Chem. Soc., 2006, 128: 1072-1073
[59] Buzzeo M C, Evans R G, Compton R G. ChemPhysChem, 2004, 5(8): 1106-1120
[60] Baker G A, Baker S N, Pandey S, Bright F V. Analyst, 2005, 130(6): 800-808
[61] Cocalia V A, Gutowski K E, Rogers R D. Coord. Chem. Rev., 2006, 250: 755-764
[62] Dietz M L. Sep. Sci. Technol., 2006, 41(10): 2047-2063
[63] Jensen M P, Neuefeind J, Beitz J V, Skanthakumar S, Soderholm L. J. Am. Chem. Soc., 2003, 125(50): 15466-15473
[64] Nikitenko S I, Cannes C, Le Naour C, Moisy P, Trubert D. Inorg. Chem., 2005, 44(25): 9497-9505
[65] Visser A E, Jensen M P, Laszak I, Nash K L, Choppin G R, Rogers R D. Inorg. Chem., 2003, 42(7): 2197-2199
[66] Mazille F, Fei Z, Kuang D, Zhao D, Zakeeruddin S, Grtzel M M, Dyson P J. Inorg. Chem., 2006, 45(4): 1585-1590
[67] Wang P, Zakeeruddin S M, Moser J E, Grtzel M. J. Phys. Chem. B, 2003, 107(48): 13280-13285
[68] Grtzel M. Nature, 2001, 414(6861): 338-344
[69] Hagfeldt A, Grtzel M. Acc. Chem. Res., 2000, 33(5): 269-277
[70] Yamanaka N, Kawano R, Kubo W, Masaki N, Kitamura T, Wada Y, Watanabe M, Yanagida S. J. Phys. Chem. B, 2007, 111(18): 4763-4769
[71] Fumino K, Wulf A, Ludwig R. Angew. Chem. Int. Ed., 2008, 47(20): 3830-3834
[72] Jones C B, Haiges R, Schroer T, Christe K O. Angew. Chem. Int. Ed., 2006, 45(30): 4981-4984
[73] Shim Y, Jeong D, Manjari S, Choi M Y, Kim H J. Acc. Chem. Res., 2007, 40(11): 1130-1137
[74] Lockard J V, Wasielewski M R. J. Phys. Chem. B, 2007, 111(40): 11638-11641
[75] Katoh R, Yoshida Y, Katsumura Y, Takahashi K. J. Phys. Chem. B, 2007, 111(18): 4770-4774
[76] Mele A, Romano G, Giannone M, Ragg E, Fronza G, Raos G, Marcon V. Angew. Chem. Int. Ed., 2006, 45(7): 1123-1126
[77] Weingaertner H. Angew. Chem. Int. Ed., 2008, 47(4): 654-670
[78] Vieira R C, Falvey D E. J. Am. Chem. Soc., 2008, 130(5): 1552-1553
[79] Vieira R C, Falvey D E. J. Phys. Chem. B, 2007, 111(18): 5023-5029
[80] Wishart J F, Neta P. J. Phys. Chem. B, 2003, 107(30): 7261-7267
[81] Shkrob I A, Wishart J F. J. Phys. Chem. B, 2009, 113(16): 5582-5592
[82] Margulis C J, Annapureddy H V R, De Biase P M, Coker D, Kohanoff J, Del Pópolo M G. J. Am. Chem. Soc., 2011, 133(50): 20186-20193
[83] Boero M, Parrinello M, Terakura K, Ikeshoji T, Liew C C. Phys. Rev. Lett., 2003, 90(22): 226403-226406
[84] Skurski P, Rak J, Simons J, Gutowski M. J. Am. Chem. Soc., 2001, 123(44): 11073-11074
[85] Sommerfeld T, Jordan K D. J. Am. Chem. Soc., 2006, 128(17): 5828-5833
[86] Bragg A E, Verlet J R R, Kammrath A, Cheshnovsky O, Neumark D M. J. Am. Chem. Soc., 2005, 127(43): 15283-15295
[87] Tauber M J, Stuart C M, Mathies R A. J. Am. Chem. Soc., 2004, 126(11): 3414-3415
[88] Tauber M J, Mathies R A. J. Am. Chem. Soc., 2003, 125(5): 1394-1402
[89] Chandler D, Leung K. Annu. Rev. Phys. Chem., 1994, 45: 557-591
[90] Zhu J, Cukier R I. J. Chem. Phys., 1993, 99(7): 5384-5395
[91] Lee S, Kim J, Lee S J, Kim K S. Phys. Rev. Lett., 1997, 79(11): 2038-2041
[92] Selloni A, Car R, Parrinello M, Carnevali P. J. Phys. Chem., 1987, 91(19): 4947-4949
[93] Leone A M, Weatherly S C, Williams M E, Thorp H H, Murray R W. J. Am. Chem. Soc., 2001, 123(2): 218-222
[94] Xia P, Bloomfield L A. Phys. Rev. Lett., 1993, 70(12): 1779-1782
[95] Turi L, Madarasz A. Science, 2011, 331: 1387-c
[96] Jacobson L, Herbert J M. Science, 2011, 331: 1387-d
[97] Larsen R E, Glover W J, Schwartz B J. Science, 2011, 331: 1387-e
[98] DMol3 package as implemented in Cerius 2/Materials Studio version 4.6. Accelrys Inc., San Diego, CA, 2008
[99] CP2K Developers Group Homepage. . http: //cp2k. berlios. de/ (2004)
[100] CPMD. . http: //www. cpmd. org/, copyright IBM Corp. 1990-2008, copyright MPI für Festkrperforschung Stuttgart 1997-2001
[1] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[2] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[3] 刘风国, 王博, 章莲玉, 刘爱民, 王兆文, 石忠宁. 离子液体在电沉积铝及铝合金中的应用[J]. 化学进展, 2020, 32(12): 2004-2012.
[4] 佟国宾, 鄂雷, 徐州, 马春慧, 李伟, 刘守新. 基于离子液体的炭材料制备、改性及应用[J]. 化学进展, 2019, 31(8): 1136-1147.
[5] 李志勇, 冯莹, 王慧勇, 袁晓晴, 赵玉灵, 王键吉. 光响应离子液体的结构与性能调控[J]. 化学进展, 2019, 31(11): 1550-1559.
[6] 刘文巧, 李臻, 夏春谷. 酸功能化离子液体固相催化材料的制备及应用[J]. 化学进展, 2018, 30(8): 1143-1160.
[7] 程海东, 陈双俊*. 功能化离子液体在聚酯PET降解与合成中的应用[J]. 化学进展, 2017, 29(4): 443-449.
[8] 宋河远, 康美荣, 靳荣华, 金福祥, 陈静. 离子液体在羰基化反应中的应用[J]. 化学进展, 2016, 28(9): 1313-1327.
[9] 杨许召, 王军, 方云. 双阳离子液体的合成、性能及应用[J]. 化学进展, 2016, 28(2/3): 269-283.
[10] 孟艳山, 陈玉焕, 邓雨晨, 张姝明, 王桂香. 离子液体及离子液体膜在天然气净化方面的应用[J]. 化学进展, 2015, 27(9): 1324-1332.
[11] 徐艺凇, 张凤香, 厉嘉云, 白赢, 肖文军, 彭家建. 聚乙二醇功能化离子液体的制备及其在有机反应中的应用[J]. 化学进展, 2015, 27(10): 1400-1412.
[12] 王雪珠, 谭忱, 李永琪, 张恒, 刘晔. 离子型膦配体及其离子型过渡金属配合物的合成和均相催化作用[J]. 化学进展, 2015, 27(1): 27-37.
[13] 李善建, 冯拉俊. 功能离子液体杂化固相纳米材料的制备及催化应用[J]. 化学进展, 2014, 26(10): 1633-1644.
[14] 孙晓杰, 邢钧, 翟毓秀, 李兆新. 离子液体在气相色谱固定相中的应用[J]. 化学进展, 2014, 26(04): 647-656.
[15] 李庆川, 曹立新, 胡海峰, 王凯, 闫培生. 黄曲霉毒素电化学生物传感器[J]. 化学进展, 2014, 26(04): 657-664.