English
新闻公告
More
化学进展 2012, Vol. 24 Issue (06): 1065-1081 前一篇   后一篇

• 量子化学专辑 •

蛋白质二维红外相干光谱的理论研究

宋建, 庄巍*   

  1. 中国科学院大连化学物理研究所 分子反应动力学国家重点实验室 大连 116023
  • 收稿日期:2011-12-01 修回日期:2012-03-01 出版日期:2012-06-24 发布日期:2012-05-11
  • 通讯作者: 庄巍 E-mail:wzhuang@dicp.ac.cn

Coherent Two Dimensional Infrared Spectroscopy of Proteins: Concepts and Simulations

Song Jian, Zhuang Wei   

  1. State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian, LiaoNing, China
  • Received:2011-12-01 Revised:2012-03-01 Online:2012-06-24 Published:2012-05-11
多肽对红外激光脉冲的非线性响应中包含了丰富的结构动力学信息。本文以肽链的酰胺振动跃迁为例,提出了模拟二维红外相干光谱的理论方案。文中首先介绍了激子模型下非线性响应的微扰图像,并基于激子模型、经典分子动力学模拟和密度泛函静电势,构建酰胺振动模式有效波动哈密顿量。采用随机刘维尔方程(SLE)、数值演化(NP)、高斯波动的累积展开等方法计算非线性响应光谱。文章最后对多肽及多肽复合物等体系的二维红外信号进行模拟和讨论。
The nonlinear optical response of peptide molecules to femtosecond infrared pulse sequences contains rich information on their structure, fluctuations and motions. we reviewed in this article the basic concepts as well as the simulation protocol for 2DIR signals associated with the amide backbone vibrational transitions of proteins. Starting with a general introduction of the perturbative picture of nonlinear optical response of excitonic systems, an introduction is given for constructing an effective fluctuating vibrational Hamiltonian based on classical MD simulation and a DFT electrostatic map. Several techniques for simulating the nonlinear response using the fluctuating Hamiltonian are then surveyed, these include the stochastic Liouville equations (SLE),numerical propagation (NP) and cumulant expansion of Gaussian fluctuation (CGF). Applications are presented to two dimensional infrared signal of peptides and peptide complexes.

中图分类号: 

()
[1] Stryer L. Biochemistry, 2nd ed, New York: W. H. Freeman Company, 1995
[2] Segel D J, Bachmann A, Hofrichter J, Hodgson K O, Doniach S, Kiefhaber T. J. Mol. Bio., 1999, 288: 489-499
[3] Arai S, Hirai M. Biophysical J., 1999, 76: 2192-2197
[4] Balbach J. J. Am. Chem. Soc., 2000, 122: 5887-5888
[5] Pfuhl M, Driscoll P C. Philos. Trans. Roy. Soc. London Ser. A, 2000, 358: 513-545
[6] Wutrich K. New York: Wiley, 1995.
[7] Mantsch H H, Chapman D. Infrared Spectroscopy of Biomolecules. New York: Wiley-Liss, 1996
[8] Torii H, Tasumi M. J. Raman Spec., 1998, 29: 81-86
[9] Larsen O F A, Bodis P, Buma W J, Hannam J S, Leigh D A, Woutersen S. P. Natl. Acad. Sci. USA, 2005, 102: 13378- 13382
[10] Demirdoven N, Cheatum C M, Chung H S, Khalil M, Knoester J, Tokmakoff A. J. Am. Chem. Soc., 2004, 126: 7981-7990
[11] Wang J, Chen J, Hochstrasser R. J. Phys. Chem. B, 2006, 110: 7545-7555
[12] Wang T, Zhu Y J, Getahun Z, Du D G, Huang C Y, DeGrado W F, Gai F. J. Phys. Chem. B, 2004, 108: 15301-15310
[13] Venkatramani R, Mukamel S. J. Chem. Phys., 2002, 117: 11089-11101
[14] Asplund M C, Zanni M T, Hochstrasser R M. P. Natl. Acad. Sci. USA, 2000, 97: 8219-8224
[15] Zheng J R, Kwak K, Asbury J, Chen X, Piletic I R, Fayer M D. Science, 2005, 309: 1338-1343
[16] Kolano C, Helbing J, Kozinski M, Sander W, Hamm P. Nature, 2006, 444: 469-472
[17] Zanni M T, Ge N H, Kim Y S, Hochstrasser R M. P. Natl. Acad. Sci. USA, 2001, 98: 11265-11270
[18] Kim Y S, Hochstrasser R M. P. Natl. Acad. Sci. USA, 2005, 102: 11185-11190
[19] Shakhnovich E I. Curr. Opin. Struc. Biol., 1997, 7: 29-40
[20] Karplus M, McCammon J A. Nature Structural Biology, 2002, 9: 646-652
[21] McCammon J, Harvey S. Dynamics of Proteins and Nucleic Acids. Cambridge: Cambridge University Press, 1987
[22] Daura X, Gademann K, Schafer H, Jaun B, Seebach D, van Gunsteren W F. J. Am. Chem. Soc., 2001, 123: 2393-2404
[23] Onuchic J N, LutheySchulten Z, Wolynes P G. Annu. Rev. Phys. Chem., 1997, 48: 545-600
[24] Bryngelson J D, Onuchic J N, Socci N D, Wolynes P G. Proteins-Structure Function and Genetics, 1995, 21: 167-195
[25] Wolynes P G, Onuchic J N, Thirumalai D. Science, 1995, 267: 1619-1620
[26] Gnanakaran S, Nymeyer H, Portman J, Sanbonmatsu K Y, Garcia A E. Curr. Opin. Struc. Biol., 2003, 13: 168-174
[27] Mukamel S, Abramavicius D. Chem. Rev., 2004, 104: 2073-2098
[28] Mukamel S. Principles of Nonlinear Optical Spectroscopy. New York: Oxford University Press, 1995
[29] Zhuang W, Abramavicius D, Hayashi T, Mukamel S. J. Phys. Chem. B, 2004, 108: 18034-18045
[30] Krimm S, Bandekar J. Adv. Protein Chem., 1986, 38: 181-364
[31] Torii H, Tasumi M. J. Chem. Phys., 1992, 96: 3379-3387
[32] Kwac K, Cho M H. J. Chem. Phys., 2003, 119: 2256-2263
[33] Zanni M T, Asplund M C, Hochstrasser R M. J. Chem. Phys., 2001, 114: 4579-4590
[34] Hayashi T, Jansen T L, Zhuang W, Mukamel S. J. Phys. Chem. A, 2005, 109: 64-82
[35] Kubo R. J. Math. Phys., 1963, 4: 174-183
[36] Kubo R. Stochastic Processes in Chemical Physics(Ed. Shuler K E). New York: John Wiley and Sons, 1969, vol. XV of Advances in Chemical Physics, 101
[37] Freed J H, Bruno G V, Polnaszek C F. J. Phys. Chem., 1971, 75: 3385-3399
[38] Schneider D J, Freed J H. Lasers, Molecules, and Methods (Eds. Hirschfelder J O, Wyatt R E, Coalson R D). New York: John Wiley & Sons, 1989, vol. LXXIII of Advances in Chemical Physics, 387
[39] Gamliel D, Levanon H. Stochastic Processes in Magnetic Resonance. River Edge, NJ: World Scientific, 1995
[40] MacPhail R A, Snyder R G, Strauss H L. J. Chem. Phys., 1982, 77: 1118-1137
[41] Turner J J, Gordon C M, Howdle S M. J. Phys. Chem., 1995, 99: 17532-17538
[42] Sanda F, Mukamel S. J. Chem. Phys., 2006, 125: art. no. 014507
[43] Kwac K, Cho M H. J. Chem. Phys., 2003, 119: 2247-2255
[44] Woutersen S, Hamm P. J. Chem. Phys., 2001, 114: 2727-2737
[45] Schweitzer-Stenner R. Biophys. J., 2002, 83: 523-532
[46] Hamm P, Lim M H, Hochstrasser R M. J. Phys. Chem. B, 1998, 102: 6123-6138
[47] Jansen T L, Zhuang W, Mukamel S. Journal of Chemical Physics, 2004, 121: 10577-10598
[48] No镕, Fischer S. Curr. Opin. Struct. Biol., 2008, 18: 154-162
[49] Chodera J D, Singhal N, Pande V S, Dill K A, Swope W C. J. Chem. Phys., 2007, 126: art. no. 155101
[50] Buchete N V, Hummer G. J. Phys. Chem. B, 2008, 112: 6057-6069
[51] Swope W C, Pitera J W, Suits F. J. Phys. Chem. B, 2004, 108: 6571-6581
[52] Sriraman S, Kevrekidis I G, Hummer G. J. Phys. Chem. B, 2005, 109: 6479-6484
[53] Bowman G R, Huang X, . Pande V S. Cell Research, 2010, 20: 622-630
[54] Smith A W, Lessing J, Ganim Z, Peng C S, Tokmakoff A, Roy S, Jansen T L C, Knoester J. J. Phys. Chem. B, 2010, 114: 10913-10924
[1] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[2] 林建云, 罗时荷, 杨崇岭, 肖颖, 杨丽庭, 汪朝阳. 生物基高分子型止血材料和伤口敷料[J]. 化学进展, 2021, 33(4): 581-595.
[3] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.
[4] 张晗, 丁家旺, 秦伟. 基于多肽识别的电化学生物传感技术[J]. 化学进展, 2021, 33(10): 1756-1765.
[5] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[6] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[7] 白凌闯, 赵静, 冯亚凯. 多功能基因递送系统促进内皮细胞增殖[J]. 化学进展, 2019, 31(2/3): 300-310.
[8] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[9] 徐柳, 钱晨, 朱辰奇, 陈志鹏, 陈瑞*. 基于多肽的纳米药物递送系统的研究[J]. 化学进展, 2018, 30(9): 1341-1348.
[10] 王志鹏, 田长麟, 郑基深. 聚酰胺类多肽二级结构模拟物的结构设计与性质分析[J]. 化学进展, 2016, 28(9): 1328-1340.
[11] 马晓川, 费浩. 金属配位在多肽与蛋白质研究中的应用[J]. 化学进展, 2016, 28(2/3): 184-192.
[12] 王见伟, 宋利锋, 赵瑾, 原续波. 基于多肽结构的聚合物水凝胶[J]. 化学进展, 2015, 27(4): 373-384.
[13] 王军, 张阿方. 多肽基超分子螺旋聚合物[J]. 化学进展, 2015, 27(10): 1413-1424.
[14] 梁妍钰, 唐姗, 郑基深. 细胞穿透环肽[J]. 化学进展, 2014, 26(11): 1793-1800.
[15] 宋利锋, 赵瑾, 袁晓燕. 多糖多肽水凝胶的增强研究[J]. 化学进展, 2014, 26(0203): 385-393.