English
新闻公告
More
化学进展 2012, Vol. 24 Issue (06): 1058-1064 前一篇   后一篇

• 量子化学专辑 •

大分子体系的量子化学分块方法

梅晔1, 何晓1, 季长鸽1, 张大为2, 张增辉*1,3   

  1. 1. 华东师范大学精密光谱科学与技术国家重点实验室 物理学系 理论与计算科学研究所 上海 20006;
    2. 新加坡南洋理工大学物理和数学科学学院 化学和生物化学系 新加坡 637371;
    3. 纽约大学化学系 纽约10003
  • 收稿日期:2012-02-01 修回日期:2012-03-01 出版日期:2012-06-24 发布日期:2012-05-11
  • 通讯作者: 张增辉 E-mail:john.zhang@nyu.edu

A Fragmentation Approach to Quantum Calculation of Large Molecular Systems

Mei Ye1, He Xiao1, Ji Changge1, Zhang Dawei2, John Z.H. Zhang1,3   

  1. 1. State Key Laboratory of Precision Spectroscopy, Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 20006;
    2. Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore;
    3. Department of Chemistry, New York University, New York 10003, USA
  • Received:2012-02-01 Revised:2012-03-01 Online:2012-06-24 Published:2012-05-11
碎片化方法为量子化学方法的发展以及在大分子体系的应用开辟了新的道路。在过去的十年里,我们见证了该领域的诸多成果,并且我们相信该方法的发展仍将持续下去。这篇文章简单回顾了近期碎片化方法在大分子电子结构计算领域的进展,重点突出中国学者在该领域的贡献。
Fragmentation method has opened a new door for the development of quantum mechanical methods and their applications to large molecules. In the past decade, we have evidenced much progress in this field, and this development is believed to be continued in the future. This article provides a brief overview on the recent development of fragmentation-based methods for electron structure calculation of large molecular systems, with highlight on contribution by researchers from China in this field.

中图分类号: 

()
[1] Yang W. Phys. Rev. Lett., 1991, 66: 1438-1441
[2] Dixon S L, Merz K M J. J. Chem. Phys., 1996, 104: 6643-6649
[3] Kobayashi M, Akama T, Nakai H. J. Chem. Phys., 2006, 125: art. no. 204106
[4] Song G L, Li Z H, Liu Z P, Cao X M, Wang W, Fan K N, Xie Y, Schaefer H F. J. Chem. Theory Comput., 2008, 4: 2049-2056
[5] Elliott P, Burke K, Cohen M H, Wasserman A. Phys. Rev. A, 2010, 82: art. no. 024501
[6] Li W, Li S. J. Chem. Phys., 2005, 122: art. no. 194109
[7] Walker P D, Mezey P G. J. Am. Chem. Soc., 1993, 115: 12423-12430 ez J, Salahub D R. J. Chem. Theory Comput., 2009, 6: 91-99
[18] Gordon M S, Fedorov D G, Pruitt S R, Slipchenko L V. Chem. Rev., 2011, 112: 632-672
[19] Chen X H, Zhang D W, Zhang J Z H. J. Chem. Phys., 2004, 120: 839-844
[20] Mei Y, Wu E L, Han K L, Zhang J Z H. Int. J. Quantum Chem., 2006, 106: 1267-1276
[21] Gao A M, Zhang D W, Zhang J Z H, Zhang Y K. Chem. Phys. Lett., 2004, 394: 293-297
[22] Mei Y, Zhang D W, Zhang J Z H. J. Phys. Chem. A, 2004, 109: 2-5
[23] He X, Zhang J Z H. J. Chem. Phys., 2005, 122: art. no. 031103
[24] Chen X H, Zhang Y K, Zhang J Z H. J. Chem. Phys., 2005, 122: art. no. 184105
[25] Chen X H, Zhang J Z H. J. Chem. Phys., 2006, 125: art. no. 044903
[26] Ma Y, Liu Y, Ma H. J. Chem. Phys., 2012, 136: art. no. 024113
[27] He X, Zhang J Z H. J. Chem. Phys., 2006, 124: art. no. 184703
[28] Zhang D W, Xiang Y, Gao A M, Zhang J Z H. J. Chem. Phys., 2004, 120: 1145-1148
[29] Chen X H, Zhang J Z H. J. Chem. Phys., 2004, 120: 11386-11391
[30] He X, Mei Y, Xiang Y, Zhang D W, Zhang J Z H. Proteins, 2005, 61: 423-432
[31] Mei Y, He X, Xiang Y, Zhang D W, Zhang J Z H. Proteins, 2005, 59: 489-495
[32] Zhang D W, Zhang J Z H. J. Theor. Comput. Chem., 2004, 3: 43-49
[33] Li S, Li W, Fang T. J. Am. Chem. Soc., 2005, 127: 7215-7226
[34] Jiang N, Ma J, Jiang Y. J. Chem. Phys., 2006, 124: art. no. 114112
[35] Hua S, Hua W, Li S. J. Phys. Chem. A, 2010, 114: 8126-8134
[36] Hua W, Fang T, Li W, Yu J G, Li S. J. Phys. Chem. A, 2008, 112: 10864-10872
[37] Mullin J M, Roskop L B, Pruitt S R, Collins M A, Gordon M S. J. Phys. Chem. A, 2009, 113: 10040-10049
[38] Collins M A. J. Chem. Phys., 2007, 127: art. no. 024104
[39] Netzloff H M, Collins M A. J. Chem. Phys., 2007, 127: art. no. 134113
[40] Xiang Y, Zhang D W, Zhang J Z H. J. Comput. Chem., 2004, 25: 1431-1437
[41] Chen X H, Zhang J Z H. J. Theor. Comput. Chem., 2004, 3: 277-289
[42] Mei Y, Ji C G, Zhang J Z H. J. Chem. Phys., 2006, 125, art. no. 094906
[43] Ji C G, Mei Y, Zhang J Z H. Biophys. J., 2008, 95: 1080-1087
[44] Ji C G, Zhang J Z H. J. Am. Chem. Soc., 2008, 130: 17129-17133
[45] Ji C G, Zhang J Z H. J. Phys. Chem. B, 2009, 113: 13898-13900
[46] Ji C G, Zhang J Z H. J. Phys. Chem. B, 2009, 113: 16059-16064
[47] Tong Y, Mei Y, Li Y L, Ji C G, Zhang J Z H. J. Am. Chem. Soc., 2010, 132: 5137-5142
[1] 杨忠志*. 电负性均衡[J]. 化学进展, 2012, 24(06): 1038-1049.
[2] 张颖, 徐昕*. 新一代密度泛函方法XYG3[J]. 化学进展, 2012, 24(06): 1023-1037.
[3] 苏培峰, 吴玮*. 经典价键理论的从头算计算方法[J]. 化学进展, 2012, 24(06): 1001-1007.
[4] 蒋鸿*. 带隙问题:第一性原理电子能带理论研究现状[J]. 化学进展, 2012, 24(06): 910-927.
[5] 花伟杰, 高斌, 罗毅*. 软X射线光谱的第一性原理模拟[J]. 化学进展, 2012, 24(06): 964-980.
[6] 郑晓, 徐瑞雪, 许健, 金锦双, 胡洁, 严以京*. 量子耗散与量子输运的级联方程组方法[J]. 化学进展, 2012, 24(06): 1129-1152.
[7] 步宇翔*. 离子液中溶剂化电子的结构及其演化动力学[J]. 化学进展, 2012, 24(06): 1094-1104.
[8] 贾建峰, 武海顺*. Ⅲ-Ⅴ族多面体团簇的稳定性规律[J]. 化学进展, 2012, 24(06): 1008-1022.
[9] 方德彩*. [2+2]环加成反应机理的理论研究[J]. 化学进展, 2012, 24(06): 879-885.
[10] 林晨升, 程文旦*, 张炜龙, 张浩, 何长振. 物质材料的结构预测和光物理性能模拟[J]. 化学进展, 2012, 24(06): 1185-1198.
[11] 吴梦昊, 戴军, 曾晓成*. 基于从头计算法的三维碳同素异形体结构设计[J]. 化学进展, 2012, 24(06): 1050-1057.
[12] 兰峥岗*, 邵久书*. 多原子体系非绝热动力学的近似理论方法[J]. 化学进展, 2012, 24(06): 1105-1119.
[13] 青木百合子*, 顾凤龙*. 增长法在离域体系纳米线中的应用[J]. 化学进展, 2012, 24(06): 886-909.
[14] Enrico Clementi, Giorgina Corongiu(著); 帅志刚;马中云;张天;尚远(译). 从原子到大分子体系的计算机模拟--计算化学50年[J]. 化学进展, 2011, 23(9): 1795-1830.
[15] 郑燕升, 卓志昊, 莫倩, 李军生. 离子液体的分子模拟与量化计算[J]. 化学进展, 2011, 23(9): 1862-1870.
阅读次数
全文


摘要

大分子体系的量子化学分块方法