English
新闻公告
More
化学进展 2012, Vol. 24 Issue (06): 1038-1049 前一篇   后一篇

• 量子化学专辑 •

电负性均衡

杨忠志*   

  1. 辽宁师范大学化学化工学院 大连 116029
  • 收稿日期:2012-01-01 修回日期:2012-03-01 出版日期:2012-06-24 发布日期:2012-05-11
  • 通讯作者: 杨忠志 E-mail:zzyang@lnnu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21133005,21073080和20873055)资助

Electronegativity Equalization

Yang Zhongzhi   

  1. College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
  • Received:2012-01-01 Revised:2012-03-01 Online:2012-06-24 Published:2012-05-11
电负性是分子中一个原子把电子拉向它自身的能力,是化学理论的基本概念之一。继Pauling建立第一个电负性标度后,提出了众多的电负性标度。只是在密度泛函理论的基础上,电负性概念和电负性均衡原理,才被精密地论证。近二十多年来,电负性理论的重要发展是:应用电负性均衡模型或方法,可以快速地计算分子体系的电荷分布,从而确定分子的其他性质,甚至包括分子的结构和反应性指标。通常的电负性均衡方法只把分子划分到原子区域,虽然简单直观,但其精度和应用范围受到限制。原子与键电负性均衡方法,把分子划分到包括原子区域、化学键区域和孤对电子区域,能够较快速精密地计算分子的电荷分布和其他性质,并被应用到构建新一代可极化或浮动电荷力场的探索中,有广阔的应用前景。
Electronegativity is the power of an atom attracting electron to itself in a molecule. It is a basic concept in chemistry. Pauling proposed the first electronegativity scale and after then many electronegativity scales were proposed. It is only on the basis of density functional theory that the concept and electronegativity principle were precisely proved theoretically. In recent decades, there have been some important developments of the electronegativity theory. Applying the electronegativity equalization model or method, one can rapidly calculate the charge distribution of a large molecule and then calculate the related properties, even molecular structure and reactivity indexes. The usual electronegativity equalization method divides a molecule only to atomic regions its accuracy and application are limited although it is simple and intuitive. Atom-bond electronegativity equalization method divides a molecule into not only atomic regions but also bond and lone-pair regions so that it can rapidly and accurately calculate molecular charge distribution and other properties, and recently it is also applied to develop a new generation of polarizable force field. Contents
1 Introduction
2 Electronegativity
2.1 Classical electronegativity scales
2.2 Modern electronegativity ideas
3 Electronegativity in density functional theory and related physical quantities
3.1 The first-order derivatives: chemical potential μ and electron density ρ
3.2 The second-order derivatives: global hardness, local hardness and local softness, fukui function
3.3 Electronegativity equalization principle
4 Modern electronegativity equalization method (EEM)
4.1 Mortier electronegativity equalization method (EEM)
4.2 Atom-bond electronegativity equalization method (ABEEM)
5 Conclusion

中图分类号: 

()
[1] Pauling L. J. Am. Chem. Soc., 1932, 54: 3570-3582; Pauling L. The Nature of the Chemical bond, 3rd ed. Ithaca and NY: Cornell University Press, 1960
[2] Mulliken R S. J. Chem. Phys., 1934, 2: 782-793
[3] Allred A L, Rochow E G, J. Inorg. Nucl. Chem., 1958, 5: 264-268
[4] Sanderson R T. J. Chem. Educ., 1952, 29: 539-544; 1954, 31: 238-245
[5] Sanderson R T. Science, 1951, 114: 670-672
[6] Sanderson R T. Polar Covalence, New York: Academic Press, 1983; Chemical Bonds and Bond Energy, NY: Academic Press, 1976
[7] Sen K D, Jørgensen C K. Electronegativity-Structure and Bonding 66. Berlin Heidelberg & New York, Springer-Verlag, 1987
[8] Bergmann D, Hinze J. Angew. Chem. Int. Ed. Engl. 1996, 35: 150-163
[9] 杨频(Yang P). 分子结构参量及其与物性关联规律(Molecular Structure Parameter and Its Correlation Regularity with Properties), 北京, 科学出版社(Beijing: Science Press), 2007
[10] Parr R G, Donnelly R A, Levy N, Palke W E. J. Chem. Phys., 1978, 68: 3801-3807
[11] Parr R G, Yang W T. Density-Functional Theory of Atoms and Molecules, New York: Oxford University press, 1989
[12] Gerrlings P, De Proft F, Langenaeker W. Chem. Rev., 2003, 103: 1793-1873
[13] Hinze, J. Fortschr. Chem. Forsch, 1968, 93: 448-482
[14] Huheey J E. Inorganic Chemistry, New York: Harper & Row, 1978
[15] Slater J. Phys. Rev., 1929, 34: 1293-1322
[16] Condon E U, Shortley G H. The Theory of Atomic Spectra, Cambridge: Cambridge University Press, 1953
[17] Vleck J H V. J. Chem. Phys., 1934, 2: 20-31
[18] Moffitt W. Rep. Prog. Phys., 1954, 17: 173-200
[19] Companion A L, Ellison F O. J. Chem. Phys., 1958, 28: 1-9
[20] Walsh A D. Discuss. Faraday Soc. 1947, 2: 1-24
[21] Hotop H, Lineberger W C. J. Phys. Chem. Ref. Data, 1975, 4: 539-577
[22] Gordy W. Phys. Rev., 1946, 69: 604-607
[23] Iczkowski R P, Margrave J L. J. Am. Chem. Soc., 1961, 83: 3547-3551
[24] Huheey J E. J. Phys. Chem., 1965, 69: 3284-3291
[25] Huheey J E. J. Phys. Chem., 1966, 70: 2086-2092
[26] Bratsch S G. J. Chem. Educ., 1985, 62: 101-103
[27] Mullay J. J. Am. Chem. Soc., 1984, 106: 5842-5847
[28] Hinze J, Jaffé H H. J. Am. Chem. Soc., 1962, 84: 540-546
[29] Hinze J, Whitehead M A, Jaffé H H. J. Am. Chem. Soc., 1963, 85: 148-154
[30] Hinze J, Jaffé H H. Can. J. Chem., 1963, 41: 1315-1328
[31] Hinze J, Jaffé H H. J. Phys. Chem., 1963, 67: 1501-1506
[32] Pritchard H O. J. Am. Chem. Soc., 1963, 85: 1876-1876
[33] Politzer P, Weinstein H. J. Chem. Phys., 1979, 71: 4218-4220
[34] Pearson R G. J. Am. Chem. Soc., 1963, 85: 3533-3539
[35] Parr P G, Pearson R G. J. Am. Chem. Soc., 193, 105: 7512-7516
[36] Mortier W J, Ghosh S K, Shankar S. J. Am. Chem. Soc., 1986, 108: 4315-4320
[37] Mortier W J, Genechten K V, Gasteiger J. J. Am. Chem. Soc., 1985, 107: 829-835
[38] Nalewajski R F. J. Am. Chem. Soc., 1984, 106: 944-945
[39] Bultinck P, Langenaeker W, Lahorte P, De Proft F, Geerlings P, Waroquier M, Tollenaere J P. J. Phys. Chem. A, 2002, 106: 7887-7894
[40] Bultinck P, Langenaeker W, Lahorte P, De Proft F, Geerlings P, Waroquier M, Tollenaere J P. J. Phys. Chem. A, 2002, 106: 7895-7901
[41] Rappé A K, Goddard W A. J. Phys. Chem., 1991, 95: 3358-3363
[42] Darrin M. Y., Yang W. J. Chem. Phys., 1996, 104: 159-172
[43] Smirnov K S, van de Graaf B. J. Chem. Soc. Faraday Trans., 1996, 92: 2469-2474
[44] Chelli R, Procacci P. J. Chem. Phys., 2002, 117: 9175-9189
[45] Yang Z Z, Shen E Z. J. Mol. Struct. (Theochem), 1994, 312: 167-173
[46] 杨忠志(Yang Z Z), 沈尔忠(Shen E Z). 中国科学(B辑)(Scientia Sinica Chimica), 1995, 25: 1233-1239
[47] Yang Z Z, Wang C S. J. Phys. Chem. A, 1997, 101: 6315-6321
[48] Wang C S, Yang Z Z. J. Chem. Phys., 1999, 110: 6189-6197
[49] Yang Z Z, Wang C S, Tang A Q. Science in China (Ser. B), 1998, 41: 331-336
[50] Wang C S, Zhao D X, Yang Z Z. Chem. Phys. Lett., 2000, 330: 132-138
[51] Cong Y, Yang Z Z. Chem. Phys. Lett., 2000, 316: 324-329
[52] Cong Y, Yang Z Z, Wang C S, Liu X C, Bao X H. Chem. Phys. Lett., 2002, 357: 59-64
[53] Yang Z Z, Wang C S. J. Theor. Comput. Chem., 2003, 2: 273-299
[54] Yang Z Z, Cui B Q, J. Chem. Theory Comput., 2007, 3: 1561-1568
[55] Yang Z Z, Wu Y, Zhao D X. J. Chem. Phys., 2004, 120: 2541-2557
[56] Wu Y, Yang Z Z. J. Phys. Chem. A, 2004, 108: 7563-7576
[57] 钱萍(Qian P), 杨忠志(Yang Z Z). 中国科学B辑(Scientia Sinica Chimica), 2006, 36(4): 284-298
[58] Yang Z Z, Li X. J. Phys. Chem. A (Letters), 2005, 109: 3517-3520
[59] Li X, Yang Z Z. J. Chem. Phys., 2005, 122: 084514
[60] Li X, Yang Z Z. J. Phys. Chem. A, 2005, 109: 4102-4111
[61] Yang Z Z, Zhang Q. J. Comput. Chem., 2006, 27: 1-10
[62] Zhang Q, Yang Z Z. Chem. Phys. Lett., 2005, 403: 242-247
[63] Yang Z Z, Qian P. J. Chem. Phys., 2006, 125: 064311-064316
[64] Wang F F, Zhao D X, Gong L D. Theoretical Chem. Account, 2009, 124: 139-150
[65] Zhao D X, Liu C, Wang F F, Yu C Y, G L D, Liu S B, Yang Z Z. J. Chem. Theory Comput., 2010, 6: 795-804
[66] Chen S L, Zhao D X, Yang Z Z. J. Comput. Chem., 2011, 32: 338-348
[67] Zhao D X, Yu L, Gong L D, Liu C, Yang Z Z. J. Chem. Phys., 2011, 134: artn. no. 194115
[1] 苏培峰, 吴玮*. 经典价键理论的从头算计算方法[J]. 化学进展, 2012, 24(06): 1001-1007.
[2] 蒋鸿*. 带隙问题:第一性原理电子能带理论研究现状[J]. 化学进展, 2012, 24(06): 910-927.
[3] 郑晓, 徐瑞雪, 许健, 金锦双, 胡洁, 严以京*. 量子耗散与量子输运的级联方程组方法[J]. 化学进展, 2012, 24(06): 1129-1152.
[4] 刘文剑. 相对论量子化学新进展*[J]. 化学进展, 2007, 19(06): 833-851.
[5] 李志伟 赵存元 陈六平 . 芳香性团簇的结构和光谱性质的理论研究[J]. 化学进展, 2006, 18(12): 1599-1607.
[6] 张阳,杨基础,于养信,李以圭. 分子模拟在超临界流体领域中的应用[J]. 化学进展, 2005, 17(06): 955-962.
[7] 柴立和. 多尺度科学的研究进展*[J]. 化学进展, 2005, 17(02): 186-191.
[8] 戴瑛,黎乐民. 密度泛函理论处理激发态与多重态结构研究进展[J]. 化学进展, 2001, 13(03): 167-.
[9] 陈凯先,嵇汝运,朱维良,蒋华良,曹阳. 生物大分子体系量子化学计算方法新进展[J]. 化学进展, 1999, 11(04): 367-.
阅读次数
全文


摘要

电负性均衡