English
新闻公告
More
化学进展 2012, Vol. 24 Issue (05): 863-870 前一篇   

• 综述与评论 •

解读纳滤:一种具有纳米尺度效应的分子分离操作

方彦彦, 李倩, 王晓琳*   

  1. 清华大学化学工程系 北京 100084
  • 收稿日期:2011-11-01 修回日期:2012-01-01 出版日期:2012-05-24 发布日期:2012-04-10
  • 基金资助:
    国家重点基础研究发展计划(973)项目(No.2009CB623401)、国家高技术发展计划(863)项目(No.2009AA062901,2012AA03A604)和北京市自然科学基金重大项目(No.2100001)资助

Nanofiltration Understanding: A Separation Process of Molecular-Level with Nano-Scale Effect

Fang Yanyan, Li Qian, Wang Xiaolin   

  1. Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2011-11-01 Revised:2012-01-01 Online:2012-05-24 Published:2012-04-10
纳滤膜是20世纪80年代末期发展起来的一种广泛用于液体分离的新型分离膜。早期研究中,先后提出的基于筛分效应的细孔模型,基于静电效应的电荷模型,以及同时考虑上述两种效应的静电位阻模型和道南位阻模型等为人们更好地理解纳滤膜分离机理和指导纳滤膜过程应用发挥了十分重要的作用。然而由于这些具有“疏松型反渗透膜”特点的纳滤膜没有相应的膜性能预测评价软件,使得针对具体应用过程的纳滤膜的大规模标准化应用受到了一定的制约。为此,结合上述模型,根据一些特定实验拟合确定混合盐体系同号离子间的竞争作用和异号离子间的调节作用,提出了一个适于混合盐体系的纳滤膜分离性能评价模型,促进了纳滤膜技术在水处理过程的大规模推广。最近,根据纳滤膜对离子选择性分离性能及其伴随的动电性质的细致而深入的实验研究,发现仅考虑筛分效应和静电效应并不能完全合理地解释纳滤膜的分离性能,且在动电性质的解析上也存在一定缺陷,进而对纳滤膜纳米级孔径引起的特殊效应和溶液体系中复杂相互作用引起的荷电性质变化有了更为深刻的认识和理解,提出并定量分析了离子透过纳滤膜时存在的介电排斥效应。
Nanofiltration(NF) membrane has been developed from the late 1980s and widely applied in the separation of liquid mixtures. Several models for NF process have been proposed, such as the pore model based on the sieving effect, the charge models based on the electrostatic effect, and the electrostatic steric-hindrance model and the Donnan steric pore model based on the both effects, which play an important role in understanding the separation mechanism and promoting the application of NF. However, the performances of these NF membranes with features of “loose RO membranes” cannot be predicted by commercial RO simulation software, which is a severe restriction on straightforward implementation of large-scale NF applications. In regard to these problems, a model was proposed for the separation performance of mixed salts solution across NF membranes to promote the application of NF during the water treatment in the light of the competitive effect among co-ions and regulation effect among counter-ions. Both two effects can be determined by some specific experiments. Recently, based on the in-depth experimental studies on rejection performance and the attendant electrokinetic properties, some researchers have found that the performance of NF membranes cannot be predicted completely by merely considering the sieving and electrostatic effect, but some drawbacks still exist in the analysis of electrokinetic properties. The further studies have contributed to a deeper understanding on the particular effect caused by the nano-scale pore size and charge features caused by the complicated interaction in solution. Moreover, the dielectric effect in the transport process of ions through NF membranes has been addressed and quantitatively analyzed.

Contents
1 Introduction
2 Models of nanofiltration
2.1 Non-equilibrium thermodynamic model
2.2 Charge models
2.3 Pore model
2.4 The electrostatic and steric-hindrance model
2.5 Models relevant to dielectric exclusion effect
3 Simulation of rejection for mixed salts
4 Transmembrane electrical potential and recognition on separation mechanism
5 Conclusion and Outlook

中图分类号: 

()
[1] Petersen R J. J. Membr. Sci., 1993, 83(1): 81—150
[2] 王晓琳(Wang X L), 丁宁(Ding N). 反渗透和纳滤技术与应用(RO/NF Technology and Application). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2005.14—15
[3] 王晓琳(Wang X L),张澄洪(Zhang C H),赵杰(Zhao J). 膜科学与技术(Membrane Science and Technology), 2000, 20(1): 29—36
[4] Rautenbach R, Groschl A. Desalination, 1990, 77(1/3): 73—84
[5] Nakao S. J. Membr. Sci., 1994, 96(1/2): 131—165
[6] 王晓琳(Wang X L). 天津城市建设学院学报(Journal of Tianjin Institute of Urban Construction), 2003, 9(2): 82—89
[7] Van der Bruggen B, Everaert K, Wilms D, Vandecasteele C. J. Membr. Sci., 2001, 193(2): 239—248
[8] Nicoll H. Filtr. Sep., 2001, 38(1): 22—23
[9] Van der Bruggen B, Vandecasteele C. Environ. Pollut., 2003, 122(3): 435—445
[10] Jiraratananon R, Sungpet A, Luangsowan P. Desalination, 2000, 130(2): 177—183
[11] Ducom G, Cabassud C. Desalination, 1999, 124(1/3): 115—123
[12] Wang X L, Zhang C H, Ouyang P K. J. Membr. Sci., 2002, 204(1/2): 271—281
[13] Wadley S, Brouckaert C J, Baddock L A D, Buckley C A. J. Membr. Sci., 1995, 102(1/2): 163—175
[14] Koyuncu I, Topacik D. J. Membr. Sci., 2002, 195(2): 247—263
[15] Freger V, Arnot T C, Howell J A. J. Membr. Sci., 2000, 178(1/2): 185—193
[16] Gotoh T, Iguchi H, Kikuchi K C. Biochem. Eng. J., 2004, 19(2): 165—170
[17] Wang X L, Ying A L, Wang W N. J. Membr. Sci., 2002, 196(1): 59—67
[18] Li S L, Li C, Liu Y S, Wang X L, Cao Z A. J. Membr. Sci., 2003, 222(1/2): 191—201
[19] Schfer A I, Fane A G, Waite T D. Nanofiltration——Principles and Applications. Oxford: Elsevier Ltd., 2003. 120—121
[20] Drioli E, Giorno L. Comprehensive Membrane Science and Engineering. Volume 2, Membrane Operations in Molecular Separations. Oxford: Elsevier Ltd., 2010. 69—71
[21] Spiegler K S, Kedem O. Desalination, 1966, 1(4): 311—326
[22] Schirg P, Widmer F. Desalination, 1992, 89(1): 89—107
[23] Perry M, Linder C. Desalination, 1989, 71(3): 233—245
[24] Koyuncu I. Desalination, 2003, 154(1): 79—88
[25] Vakili-Nezhaad G, Akbari Z. Desalination and Water Treatment, 2011, 27(1/3): 189—196
[26] Jagur-Grodzinski J, Kedem O. Desalination, 1966, 1(4): 327—341
[27] Jonsson G. J. Membr. Sci., 1983, 14(3): 211—227
[28] Yaroshuk A E. J. Membr. Sci., 2002, 198(2): 285—297
[29] Garba Y, Taha S, Cabon J, Dorange G. J. Membr. Sci., 2003, 211(1): 51—58
[30] Bason S, Kedem O, Freger V. J. Membr. Sci., 2009, 326(1): 197—204
[31] Kedem O, Freger V. J. Membr. Sci., 2008, 310(1/2): 586—593
[32] Teorell T. Proceedings of National Academy of Sciences of United States of America, 1935, 21: 152—161
[33] Meyer K H, Sievers J F. Helv. Chim. Acta., 1936, 19(1): 649—664
[34] Teorell T. J. Gen. Physiol., 1937, 21(1): 107—122
[35] Morrison F A, Osterle J F. J. Chem. Phys., 1965, 43(6): 2111—2115
[36] Gross R J, Osterle J F. J. Chem. Phys., 1968, 49(1): 228—234
[37] Fair J C, Osterle J F. J. Chem. Phys., 1971, 54(8): 3307—3316
[38] Garba Y, Taha S, Gondrexon N, Dorange G. J. Membr. Sci., 1999, 160(2): 187—200
[39] Jacazio G, Probstei R F, Sonin A A, Yung D. J. Phys. Chem., 1972, 76(26): 4015—4023
[40] Sasidhar V, Ruckenstein E. J. Colloid Interface Sci., 1981, 82(2): 439—457
[41] Sasidhar V, Ruckenstein E. J. Colloid Interface Sci., 1982, 85(2): 332—362
[42] Smit J A M. J. Colloid Interface Sci., 1989, 132(2): 413—424
[43] Tsuru T, Urairi M, Nakao S, Kimura S. J. Chem. Eng. Jan., 1991, 24(4): 518—524
[44] Fievet P, Szymczyk A, Aoubiza B, Pagetti J. J. Membr. Sci., 2000, 168(1/2): 87—100
[45] Oldham I B, Osterle J F, Young F J. Journal of Colloid Science, 1963, 18(4): 328—336
[46] Christoforou C C, Westermannclark G B, Anderson J L. J. Colloid Interface Sci., 1985, 106(1): 1—11
[47] Fievet P, Aoubiza B, Szymczyk A, Pagetti J. J. Membr. Sci., 1999, 160(2): 267—275
[48] Labbez C, Fievet P, Szymczyk A, Aoubiza B, Vidonne A, Pagetti J. J. Membr. Sci., 2000, 184(1): 79—95
[49] Szymczyk A, Aoubiza B, Fievet P, Pagetti J. J. Colloid Interface Sci., 1999, 216(2): 285—296
[50] Szymczyk A, Fievet P, Aoubiza B, Simon C, Pagetti J. J. Membr. Sci., 1999, 161(1/2): 275—285
[51] Szymczyk A, Labbez C, Fievet P, Aoubiza B, Simon C. AlChE J., 2001, 47(10): 2349—2358
[52] Shang W J, Tu C H, Wang X L. Desalination, 2009, 236(1/3): 306—315
[53] Hijnen H J M, Vandaalen J, Smit J A M. J. Colloid Interface Sci., 1985, 107(2): 525—539
[54] Wang X L, Tsuru T, Nakao S, Kimura S. J. Membr. Sci., 1995, 103(1/2): 117—133
[55] Shang W J, Wang X L, Yu Y X. J. Membr. Sci., 2006, 285(1/2): 362—375
[56] Renkin E M. J. Gen. Physiol., 1954, 38(2): 225—243
[57] Pappenheimer J R. Physiological Reviews, 1953, 33(3): 387—423
[58] Pappenheimer J R, Renkin E M, Borrero L M. Am. J. Physiol., 1951, 167(1): 13—46
[59] Bowen W R, Mohammad A W, Hilal N. J. Membr. Sci., 1997, 126(1): 91—105
[60] Nakao S, Kimura S. J. Chem. Eng. Jpn., 1982, 15(3): 200—205
[61] Deen W M. AIChE J., 1987, 33(9): 1409—1425
[62] Tam C M, Tremblay A Y. J. Membr. Sci., 1991, 57(2/3): 271—287
[63] Geraldes V, Semiao V, de Pinho M N. J. Membr. Sci., 2001, 191(1/2): 109—128
[64] De Pinho M N, Semiao V, Geraldes V. J. Membr. Sci., 2002, 206(1/2): 189—200
[65] Wang X L, Tsuru T, Togoh M, Nakao S I, Kimura S. J. Chem. Eng. Jpn., 1995, 28(2): 186—192
[66] Wang X L, Tsuru T, Togoh M, Nakao S I, Kimura S. J. Chem. Eng. Jpn., 1995, 28(4): 372—380
[67] Wang X L, Tsuru T, Nakao S, Kimura S. J. Membr. Sci., 1997, 135(1): 19—32
[68] Wang X L, Tsuru T, Togoh M, Nakao S I, Kimura S. J. Chem. Eng. Jpn., 1995, 28(4): 372—380
[69] Bowen W R, Mukhtar H. J. Membr. Sci., 1996, 112(2): 263—274
[70] Bowen W R, Welfoot J S. Chem. Eng. Sci., 2002, 57(7): 1121—1137
[71] Szymczyk A, Fievet P. J. Membr. Sci., 2005, 252(1/2): 77—88
[72] Senapati S, Chandra A. J. Phys. Chem. B, 2001, 105(22): 5106—5109
[73] Marti J, Nagy G, Guardia E, Gordillo M G. J. Phys. Chem. B, 2006, 110(47): 23987—23994
[74] Born M. Z. Physik. Chem., 1920, 1(1): 45—48
[75] Yaroshchuk A E. Adv. Colloid Interface Sci., 2000, 85(2/3): 193—230
[76] Bandini S, Vezzani D. Chem. Eng. Sci., 2003, 58(15): 3303—3326
[77] Lanteri Y, Szymczyk A, Fievet P. Langmuir, 2008, 24(15): 7955—7962
[78] Szymczyk A, Fievet P. Desalination, 2006, 200(1/3): 122—124
[79] Szymczyk A, Fievet P, Ramseyer C. Desalination, 2006, 200(1/3): 125—126
[80] Szymczyk A, Fatin-Rouge N, Fievet P, Ramseyer C, Vidonne A. J. Membr. Sci., 2007, 287(1): 102—110
[81] Deon S, Dutournie P, Bourseau P. AIChE J., 2007, 53(8): 1952—1969
[82] Escoda A, Lanter Y, Fievet P, Deon S, Szymczyk A. Langmuir, 2010, 26(18): 14628—14635
[83] Montalvillo M, Silva V, Palacio L, Hernandez A, Pradanos P. Desalination and Water Treatment, 2011, 27(1/3): 25—30
[84] Deon S, Dutournie P, Limousy L, Bourseau P. Sep. Purif. Technol., 2009, 69(3): 225—233
[85] Wang X L, Wang W N, Wang D X. Desalination, 2002, 145(1/3): 115—122
[86] Su M, Wang D X, Wang X L, Ando M, Shintani T. Desalination, 2006, 191(1/3): 303—308
[87] Gilron J, Gara N, Kedem O. J. Membr. Sci., 2001, 185(2): 223—236
[88] Nielsen D W, Jonsson G. Sep. Purif. Technol., 1994, 29(9): 1165—1182
[89] Garcia-Aleman J, Dickson J, Mika A. J. Membr. Sci., 2004, 240(1/2): 237—255
[90] Garcia-Aleman J, Dickson J M. J. Membr. Sci., 2004, 239(2): 163—172
[91] Garcia-Aleman J, Dickson J M. J. Membr. Sci., 2004, 235(1/2): 1—13
[92] Escoda A, Déon S, Fievet P. J. Membr. Sci., 2004, 378(1/2): 214—223
[93] Cavaco Moro A I, Szymczyk A, Fievet P, Alves A M B. J. Membr. Sci., 2008, 322(2): 320—330
[94] Bouranene S, Fievet P, Szymczyk A. Chem. Eng. Sci., 2009, 64(17): 3789—3798
[95] Silva V, Geraldes V, Brites Alves A M B, Palacio L, Pradanos P, Hernandez A. Desalination, 2011, 277(1/3): 29—39
[96] Déon S, Dutournié P, Limousy L, Bourseau P. AIChE J., 2011, 57(4): 985—995
[97] Wang D X, Wang X L, Tomi Y, Ando M, Shintani T. J. Membr. Sci., 2006, 280(1/2): 734—743
[98] Wang D X, Wu L, Liao Z D, Wang X L, Tomi Y, Ando M, Shintani T. J. Membr. Sci., 2006, 284(1/2): 384—392
[99] Tu C H, Wu L, Wang D X, Wang X L. Desalination, 2010, 260(1/3): 218—224
[100] Lettmann C, Mockel D, Staude E. J. Membr. Sci., 1999, 159(1/2): 243—251
[101] Fievet P, Sbai M, Szymczyk A. J. Membr. Sci., 2005, 264(1/2): 1—12
[102] Benavente J, Jonsson G. Sep. Purif. Technol., 2001, 22/23(1/3): 637—642
[103] Benavente J, Jonsson G. Colloids and Surface A-Physicochemical and Engineering Aspects, 1999, 152(2/3): 431—437
[104] Yaroshchuk A E, Boiko Y P, Makovetskiy A L. Langmuir, 2002, 18(13): 5154—5162
[105] Lefebvre X, Plameri J, David P. J. Phys. Chem. B, 2004, 108(43): 16811—16824
[106] Lefebvre X, Palmeri J. J. Phys. Chem. B, 2005, 109(12): 5525—5540
[107] 方彦彦(Fang Y Y), 涂丛慧(Tu C H), 王晓琳(Wang X L). 高等学校化学学报(Chemical Journal of Chinese Universities), 2010, 31(4): 782—789
[108] Benavente J, Jonsson G. J. Membr. Sci., 2000, 172(1/2): 189—197
[109] Szymczyk A, Sbai M, Fievet P. Langmuir, 2005, 21(5): 1818—1826
[110] Tu C H, Wang H L, Wang X L. Langmuir, 2010, 26(22): 17656—17664
[111] Tu C H, Fang Y Y, Zhu J, van der Bruggen B, Wang X L. Langmuir, 2011, 27(16): 10274—10281
[112] 涂丛慧(Tu C H). 清华大学博士论文(Doctoral Dissertation of Tsinghua University), 2011
[1] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[2] 高凤凤, 杨言言, 杜晓, 郝晓刚, 官国清, 汤兵. 电控离子(交换)膜分离技术——从ESIX到ESIPM[J]. 化学进展, 2020, 32(9): 1344-1351.
[3] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[4] 赵凤阳, 姜永健, 刘涛, 叶纯纯. 纳滤膜新型材料研究[J]. 化学进展, 2018, 30(7): 1013-1027.
[5] 赵凤阳, 秘一芳, 安全福, 高从堦. 荷正电聚乙烯亚胺纳滤膜的制备与应用[J]. 化学进展, 2016, 28(4): 541-551.
[6] 毕鹏禹, 常林, 牟瑛琳, 刘建友, 吴昱, 魏芸. 溶剂浮选技术的研究现状与展望[J]. 化学进展, 2013, 25(08): 1362-1374.
[7] 计艳丽 安全福 钱锦文 陈欢林 高从堦. 聚电解质层层自组装纳滤膜*[J]. 化学进展, 2010, 22(01): 119-124.
[8] 于洪涛,全燮. 纳米异质结光催化材料在环境污染控制领域的研究进展*[J]. 化学进展, 2009, 21(0203): 406-419.
[9] 展侠,李继定,黄军其,陈翠仙. 渗透汽化优先透醇分离膜*[J]. 化学进展, 2008, 20(09): 1416-1426.
[10] 郭彦,赵健伟. 有序分子组装膜电极非理想伏安图的理论研究*[J]. 化学进展, 2008, 20(06): 821-827.
[11] 卫旺,相里粉娟,金万勤,徐南平. 耐溶剂纳滤膜*[J]. 化学进展, 2007, 19(10): 1592-1597.
[12] 张波,刘洪来,胡英. 带同种电荷胶体颗粒间的相互吸引*[J]. 化学进展, 2001, 13(01): 1-.