English
新闻公告
More
化学进展 2012, Vol. 24 Issue (05): 852-862 前一篇   后一篇

• 综述与评论 •

支撑磷脂双层膜的研究进展

张治磊, 王志宁, 高学理, 高从堦*   

  1. 中国海洋大学化学化工学院 海洋化学理论与工程技术教育部重点实验室 青岛 266100
  • 收稿日期:2011-09-01 修回日期:2011-12-01 出版日期:2012-05-24 发布日期:2012-04-10
  • 基金资助:
    国家自然科学基金项目(No.21106139,21006100)和山东省中青年科学家科研奖励基金(No.BS2011CL040)资助

Progress in Supported Phospholipid Bilayers

Zhang Zhilei, Wang Zhining, Gao Xueli, Gao Congjie   

  1. Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
  • Received:2011-09-01 Revised:2011-12-01 Online:2012-05-24 Published:2012-04-10
支撑磷脂双层膜(supported phospholipid bilayers, SPBs)是细胞膜研究中普及的模型,是固定生物活性物质的理想材料,不仅可以保持生物分子的活性,还能有效抑制其他生物分子的非特异性吸附,在跨膜蛋白、仿生膜、水处理、生物医学和生物传感器等研究领域具有广泛的应用前景。本文介绍了支撑磷脂双层膜的表征方法和制备方法,包括Langmuir Blodgett(LB)膜提拉法、囊泡融合法和LB膜提拉法与囊泡融合联合法;详细阐述了囊泡融合法制备SPBs的机理;综述了囊泡融合法制备SPBs的影响因素,包括囊泡浓度、缓冲溶液、温度、囊泡和基底表面电荷等因素;列举了支撑磷脂膜的应用,并展望了支撑磷脂双层膜的研究趋势。
Supported phospholipid bilayers(SPBs) are popular as model systems for cell membranes and are ideal material for fixing biological active substances. In addition, SPBs can not only maintain the biological activity of molecules, but also inhibit other non-specific adsorption of biological molecules. SPBs are promising for future applications in the transmembrane protein, biomimetics, treating water, biomedicine and biosensors. The characterization and preparation methods of SPBs are reviewed, which include Langmuir-Blodgett technique, lipid vesicles fusion approach, and the combination of Langmuir-Blodgett technique and vesicles fusion approach. It is described in detail that the formation mechanisms of SPBs triggered by vesicles fusion approach. The factors of the formation of SPBs are also reviewed in this paper, including the concentration of vesicles, buffer solution, temperature, charge of vesicles and the solid surface. In the end, the applications of SPBs and the latest trends in the study of SPBs are predicted.

Contents
1 Introduction
2 Characterization methods of SPBs
3 Preparation methods of SPBs
3.1 Langmuir-Blodgett technique
3.2 Vesicle fusion
3.3 Combination of Langmuir-Blodgett monolayer transfer and vesicle fusion
4 Influence factor
4.1 Influencing of surface charge about vesicle and support
4.2 Influencing of buffer solution
4.3 Influencing of temperature
4.4 Influencing of vesicle concentration
4.5 Influencing of surface property
4.6 Influencing of osmotic pressure
5 Application
5.1 Biomembrane model
5.2 Sensors
5.3 Biomedicine
5.4 Treating water
6 Prospects

中图分类号: 

()
[1] Parmar M M, Edwards K, Madden T D. Biochim. Biophys. Acta, 1999, 1421(1): 77—90
[2] Curran A R, Templer R H, Booth P J. Biochemistry, 1999, 38(29): 9328—9336
[3] Sackmann E. Science, 1996, 271(5245): 43—48
[4] Steinem C, Janshoff A, Ulrich W P, Sieber M, Galla H J. Biochim. Biophys. Acta, 1996, 1279(2): 169—180
[5] Henrickson S E, Misakian M, Robertson B, Kasianowicz J J. Phys. Rev. Lett., 2000, 85(14): 3057—3060
[6] Nielsen L K, Vishnyakov A, Jorgensen K, Bjornholm T, Mouritsen O G. J. Phys. Condens. Matter., 2000, 12(8A): A309—A314
[7] Wang J G, Teng R R, Wang E K. Acta Chim. Sinica, 2001, 59(12): 2138—2142
[8] Gao H, Luo G A, Feng J, Ottova A L, Tien H T. Acta Chim. Sinica, 2001, 59(2): 220—223
[9] Fang Y, Frutos A G, Lahiri J. J. Am. Chem. Soc., 2002, 124(11): 2394—2395
[10] Zviman M, Tien H T. Biosens. Bioelectron., 1991, 6(1): 37—42
[11] Groves J T, Ulman N, Boxer S G. Science, 1997, 275(5300): 651—653
[12] Castellana E T, Cremer P S. Surf. Sci. Rep., 2006, 61(10): 429—444
[13] Schuster B, Sleytr U B. Curr. Nanosci., 2006, 2(2): 143—152
[14] Haggin J. Chem. Eng. News, 1988, 66(23): 7—16
[15] Reimhult E, Kumar K. Trends Biotechnol., 2008, 26(2): 82—89
[16] Mueller P, Rudin D O, Tien H T, Wescott W C. Nature, 1962, 194: 979—980
[17] Mueller P, Rudin D O, Tien H T, Wescott W C. J. Phys. Chem., 1963, 67: 534—535
[18] Tamm L K, Mcconnell H M. Biophys. J., 1985, 47(1): 105—113
[19] Roy M O, Pugniere M, Jullien M, Chopineau J, Mani J C. J. Mol. Recognit., 2001, 14(1): 72—78
[20] Kaminisky M J, Mackenzie C R, Mooibroek M J, Dahms T E, Hirama T, Houghton A N, Chapman P B, Evans S V. J. Biol. Chem., 1999, 274(9): 5597—5604
[21] Mozsolits H, Wirth H J, Werkmeister J, Aguilar M I. Biochim. Biophys. Acta, 2001, 1512(1): 64—76
[22] Harrison B A, MacKenzie R, Hirama T, Lee K K, Altman E. J. Immun. Meth., 1998, 212(1): 29—39
[23] Reimhult E, Hook F, Kasemo B. Langmuir, 2003, 19(5): 1681—1691
[24] Richter R P, Brisson A R. Langmuir, 2004, 20(11): 4609—4613
[25] Reimhult E, Zaech M, Hoeoek F, Kasemo B. Langmuir, 2006, 22(7): 3313—3319
[26] Kwon J, Hong J, Kim Y S, Lee D Y, Lee K, Lee S M, Park S. Rev. Sci. Instrum., 2003, 74(10): 4378—4382
[27] 陈耀文(Chen Y W), 林月娟(Lin Y J), 张海丹(Zhang H D), 沈智威(Shen Z W), 沈忠英(Shen Z Y). 中国体视学与图像分析(Chinese Journal of Stereology and Image Analysis), 2006, 11(1): 53—58
[28] Goksu E I, Vanegas J M, Blanchette C D, Lin W C, Longo M L. Biochim. Biophys. Acta, 2009, 1788(1): 254—266
[29] Richter R, Mukhopadhyay A, Brisson A. Biophys J., 2003, 85(5): 3035—3047
[30] Tawa K, Morigaki K. Colloids Surf. B, 2010, 81(2): 447—451
[31] Cuypers P A, Willems G M, KopJos M M, Corsel J W, Janssen M P, Hermens W T. Proteins at Interfaces, 1987, 343: 208—221
[32] 刘妍(Liu Y), 陈艳艳(Chen Y Y), 靳刚(Jin G). 纳米科技(Nanotechnology), 2007, 4(1): 22—26
[33] Seul M, Eisenberger P, McConnell H M. Proc. Natl. Acad. Sci. USA, 1983, 80(18): 5795—5797
[34] Brzozowska M, Oberts B P, Blanchard G J, Majewski J, Krysinski P. Langmuir, 2009, 25(16): 9337—9345
[35] Horton M R, Hoefling F, Raedler J O, Franosch T. Soft Matter, 2010, 6(12): 2648—2656
[36] Granito C, Goldenberg L M, Bryce M R, Monkman A P, Troisi L, Pasimeni L, Petty M C. Langmuir, 1996, 12(2): 472—476
[37] Rinia H A, Demel R A, van der Eerden J P, de Kruijff B. Biophys J., 1999, 77(3): 1683—1693
[38] Dufrene Y F, Barger W R, Green J D, Lee G U. Langmuir, 1997, 13(18): 4779—4784
[39] Kalb E, Frey S, Tamm L K. Biochim. Biophys. Acta, 1992, 1103(2): 307—316
[40] Horn R G. Biochim. Biophys. Acta, 1984, 778(1): 224—228
[41] Brian A A, Mcconnell H M. Proc. Natl. Acad. Sci. USA, 1984, 81(19): 6159—6163
[42] Jass J, Tjarnhage T, Puu G. Biophys. J., 2000, 79(6): 3153—3163
[43] Richter R P, Brisson A R. Biophys J., 2005, 88(5): 3422—3433
[44] Ei Kirat K, Morandat S, Dufrene Y F. Biochim. Biophys. Acta, 2010, 1798(4): 750—765
[45] Lagerholm B C, Starr T E, Volovyk Z N, Thompson N L. Biochemistry, 2000, 39(8): 2042—2051
[46] Cremer P S, Boxer S G. J. Phys. Chem. B, 1999, 103(13): 2554—2559
[47] Zasadzinski J A, Helm C A, Longo M L, Weisenhorn A L, Gould S A, Hansma P K. Biophys. J., 1991, 59(3): 755—760
[48] Egawa H, Furusawa K. Langmuir, 1999, 15(5): 1660—1666
[49] Starr T E, Thompson N L. Langmuir, 2000, 16(26): 10301—10308
[50] Ajo-Franklin C M, Kam L, Boxer S G. Proc. Natl. Acad. Sci. USA, 2001, 98(24): 13643—13648
[51] Rossetti F F, Bally M, Michel R, Textor M, Reviakine I. Langmuir, 2005, 21(14): 6443—6450
[52] Stelzle M, Weissmueller G, Sackmann E. J. Phys. Chem., 1993, 97(12): 2974—2981
[53] Marakhova I I, Vereninov A A, Toropova F V, Vinogradova T A. Biochim. Biophys. Acta, 1998, 1368(1): 61—72
[54] Yang J, Kleijn J M. Biophys. J., 1999, 76(1): 323—332
[55] Gritsch S, Nollert P, Jahnig F, Sackmann E. Langmuir, 1998, 14(11): 3118—3125
[56] Bunjes N, Schmidt E K, Jonczyk A, Rippmann F, Beyer D, Ringsdorf H, Grber P, Knoll W, Naumann R. Langmuir, 1997, 13(23): 6188—6194
[57] Lahiri J, Kalal P, Frutos A G, Jonas S J, Schaeffler R. Langmuir, 2000, 16(20): 7805—7810
[58] Salamon Z, Wang Y, Tollin G, Macleod H A. Biochim. Biophys. Acta, 1994, 1195(2): 267—275
[59] Puu G, Gustafson I. Biochim. Biophys. Acta, 1997, 1327(2): 149—161
[60] Richter R P, Berat R, Brisson A R. Langmuir, 2006, 22(8): 3497—3505
[61] Crane J M, Kiessling V, Tamm L K. Langmuir, 2005, 21(4): 1377—1388
[62] Seifert U. Adv. Phys., 1997, 46(1): 135—137
[63] Zhdanov V P, Keller C A, Glasma K, Kasemo B. Chem. Phys., 2000, 112(2): 900—909
[64] Zhdanov V P, Kasemo B. Langmuir, 2001, 17(12): 3518—3521
[65] Reimhult E, Hook F, Kasemo B. Phys. Rev. E, 2002, 66(5): art. no. 051905
[66] Mclaughlin A, Grathwohl C, Mclaughlin S. Biochim. Biophys. Acta, 1978, 513(3): 338—357
[67] Reviakine I, Brisson A. Langmuir, 2000, 16(4): 1806—1815
[68] Kunze A, Svedhem S, Kasemo B. Langmuir, 2009, 25(9): 5146—5158
[69] Seantier B, Breffa C, Félix O, Decher G. J. Phys. Chem. B, 2005, 109(46): 21755—21765
[70] Gregory D P, Ginsberg L. Biochim. Biophys. Acta, 1984, 769(1): 238—244
[71] Ekeroth J, Konradsson P, Hk F. Langmuir, 2002, 18(21): 7923—7929
[72] Leckband D E, Helm C A, Israelachvili J. Biochemistry, 1993, 32(4): 1127—1140
[73] Nollert P, Kiefer H, Jahnig F. Biophys. J., 1995, 69(4): 1447—1455
[74] Sofou S, Thomas J L. Biosens. Bioelectron., 2003, 18(4): 445—455
[75] Boudard S, Seantier B, Breffa C, Decher G, Felix O. Thin Solid Films, 2005, 495(1/2): 246—251
[76] Keller C A, Kasemo B. Biophys. J., 1998, 75(3): 1397—1402
[77] Gromelsk S, Saraiva A M, Krastev R, Brezesinski G. Colloids Surf., B, 2009, 74(2): 477—483
[78] Cho N J, Frank C W, Kasemo B, Hook F. Nature Protocols, 2010, 5(6): 1096—1106
[79] Hauser H, Oldani D, Phillips M C. Biochemistry, 1973, 12(22): 4507—4517
[80] Sundh M, Svedhem S, Sutherland D S. J. Phys. Chem. B, 2011, 115(24): 7838—7848
[81] Jonsson P, Hook F. Langmuir, 2011, 27(4): 1430—1439
[82] Lu X D, Ottova A L, Tien H T. Bioelectrochem. Bioenerg., 1996, 39(2): 285—289
[83] Achalkumar A S, Bushby R J, Evans S D. Soft Matter, 2010, 6(24): 6036—6051
[84] Czolkos I, Jesorka A, Orwar O. Soft Matter, 2011, 7(10): 4562—4576
[85] Szekely O, Schilt Y, Steiner A, Raviv U. Langmuir, 2011, 27(24): 14767—14775
[86] Ziblat R, Leiserowitz L, Addadi L. J. Am. Chem. Soc., 2010, 132(28): 9920—9927
[87] Garcia-Manyes S, Redondo-Morata L, Oncins G, Sanz F. J. Am. Chem. Soc., 2010, 132(37): 12874—12886
[88] Domanska M K, Kiessling V, Stein A, Fasshauer D, Tamm L K. J. Biol. Chem., 2009, 284(46): 32158—32166
[89] Tabaei S R, Jonsson P, Branden M, Hook F. J. Struct. Biol., 2009, 168(1): 200—206
[90] Becucci L, D'Amico M, Daniele S, Olivotto M, Pozzi A, Guidelli R. Bioelectrochemistry, 2010, 78(2): 176—180
[91] Garcia-Manyes S, Sanz F. Biochim. Biophys. Acta, 2010, 1798(4): 741—749
[92] Jung H, Robison A D, Cremer P S. J. Struct. Biol., 2009, 168(1): 90—94
[93] Wacklin H P. Curr. Opin. Colloid Interface Sci., 2010, 15(6): 445—454
[94] Kannisto K, Murtomaki L, Viitala T. Colloids Surf. B, 2011, 86(2): 298—304
[95] 马文宝 (Ma W B), 张立志 (Zhang L Z). 化工进展 (Chemical Industry and Engineering Progress), 2007, 26(11): 1538—1545
[96] 陈国明 (Chen G M). 汕头大学硕士论文 (Master Dissertation of Shantou University), 2004
[97] Ottova A L, Tien H T. Bioelectrochem. Bioenerg., 1997, 42(2): 141—152
[98] Vassilev P M, Kanazirska M P, Charamella L J, Dimitrov N V. Cancer Research, 1987, 47(3): 519—522
[99] Wang L G, Li Y H, Tien H T. Bioelectrochem. Bioenerg., 1995, 36(2): 145—147
[100] 沈树宝 (Shen S B), 陈英文(Chen Y W), 夏明芳 (Xia M F), 范俊 (Fan J), 邹敏 (Zou M), 胡永红 (Hu Y H). 工业水处理 (Industrial Water Treatment), 2003, 23(3): 40—43
[101] 杨宝学 (Yang B X), 赵雪俭 (Zhao X J). 中国病理生理杂志 (Chinese Journal of Pathophysiology), 2005, 21(8): 1619—1622
[102] Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J, Mayes A M. Nature, 2008, 452(7185): 301—310
[103] Lee K P, Arnot T C, Mattia D. J. Membr. Sci., 2011, 370(1/2): 1—22
[104] Kaufman Y, Berman A, Freger V. Langmuir, 2010, 26(10): 7388—7395
[1] 徐永洞, 刘志丹. 生物质水热液化水相产物形成机理及资源回收[J]. 化学进展, 2021, 33(11): 2150-2162.
[2] 姚阳榕, 谢素原. 碳团簇的结构及其演进[J]. 化学进展, 2019, 31(1): 50-62.
[3] 程新兵, 张强*. 金属锂枝晶生长机制及抑制方法[J]. 化学进展, 2018, 30(1): 51-72.
[4] 韩德文, 王鑫彤, 鞠法帅, 王杨君, 冯加良, 汪午. PM2.5中的有机硫酸酯类化合物[J]. 化学进展, 2017, 29(5): 530-538.
[5] 王晶, 范昊雯, 张贺, 陈群, 刘仪, 马卫华. 钛的阳极氧化过程与TiO2纳米管的形成机理[J]. 化学进展, 2016, 28(2/3): 284-295.
[6] 詹昊, 张晓鸿, 阴秀丽, 吴创之. 生物质热化学转化过程含N污染物形成研究[J]. 化学进展, 2016, 28(12): 1880-1890.
[7] 郭慧慧, 苗娜娜, 李腾飞, 郝君, 高缘, 张建军. 共无定形药物——新型单相无定形二元体系[J]. 化学进展, 2014, 26(0203): 478-486.
[8] 朱绪飞, 韩华, 戚卫星, 路超, 蒋龙飞, 段文强 . 二次阳极氧化技术的理论依据及其局限性[J]. 化学进展, 2012, 24(11): 2073-2086.
[9] 李祥子, 魏先文. 磁性金属纳米管的制备、形成机理及潜在应用[J]. 化学进展, 2012, 24(11): 2143-2157.
[10] 胡磊, 孙勇, 林鹿. 离子液体介导制备5-羟甲基糠醛[J]. 化学进展, 2012, 24(04): 483-491.
[11] 王聪,刘秀凤,崔瑞利,张宝泉. 沸石分子筛膜缺陷的形成及修复*[J]. 化学进展, 2008, 20(12): 1860-1867.
[12] 武海顺,贾建峰. 氮化硼纳米管的研究进展*[J]. 化学进展, 2004, 16(01): 6-.
阅读次数
全文


摘要

支撑磷脂双层膜的研究进展