English
新闻公告
More
化学进展 2012, Vol. 24 Issue (05): 844-851 前一篇   后一篇

• 综述与评论 •

分子印迹在仿生免疫吸附分析中的应用

吕春晖1,2, 王硕2, 方国臻2, 汤轶伟2, 王岁楼1*   

  1. 1. 中国药科大学药学院 南京 211198;
    2. 天津科技大学食品营养与安全教育部重点实验室 天津 300457
  • 收稿日期:2011-09-01 修回日期:2011-12-01 出版日期:2012-05-24 发布日期:2012-04-10
  • 基金资助:
    国家自然科学基金项目(No.30872126)和天津市自然科学基金项目(No.10JCZDJC18300)资助

Molecularly Imprinted Polymers as Antibody Alternatives in Sorbent Immunoassays

Lv Chunhui1,2, Wang Shuo2, Fang Guozhen2, Tang Yiwei2, Wang Suilou1*   

  1. 1. School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
    2. Key Laboratory of Food Nutrition and Safety of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
  • Received:2011-09-01 Revised:2011-12-01 Online:2012-05-24 Published:2012-04-10
分子印迹聚合物是一种含特异性识别位点的高分子材料,具有高稳定性、低成本、制备简单和可重复利用等特点,常被作为仿生抗体应用于免疫分析。本文综述了分子印迹免疫吸附分析(molecularly imprinted sorbent immunoassays, MIAs)的研究进展,介绍了以不同标记物为探针的仿生免疫分析方法的发展,着重介绍了均相免疫分析系统与分子印迹聚合物的新型合成方法在MIAs中的应用。最后,本文指出分子印迹聚合物的一些缺点并没有阻碍其在免疫吸附分析中的应用,并对MIAs仍然存在的问题和发展前景进行了分析。
Molecularly imprinted polymer(MIP), a material which owns artificially-created binding sites coupled with several distinct advantages such as high chemical, mechanical and thermal stability, robust, easy preparation, low cost and reusable. MIP as mimic in pseudo-immunoassays have attracted considerable attention over the last few years. The advances in molecularly imprinted sorbent immunoassays(MIAs) are reviewed from radioligand immunoassays to non-radioligand immunoassays, and emphasize on the promotion which homogeneous immunoassay systems and new synthesis methods bring. It is shown that the perceived disadvantages of MIP can be ignored in MIAs. The existing problems and prospects of MIAs are also described.

Contents
1 Introduction
2 Molecularly imprinted sorbent immunoassays(MIAs)
2.1 Heterogeneous MIAs
2.2 Homogeneous MIAs
3 Application of new synthesis methods in MIAs
3.1 Suspension polymerization
3.2 Precipitation polymerization
3.3 Reversible addition-fragmentation chain transfer(RAFF) polymerization
3.4 Photolithography polymerization
4 Conclusions and outlook

中图分类号: 

()
[1] Piletsky S A, Alcock S, Turner A P F. Trends Biotechnol., 2001, 19: 9—12
[2] Lavignac N, Allender C J, Brain K R. Anal. Chim. Acta, 2004, 510: 139—145
[3] Ansell R J. J. Chromatogr. B, 2004, 804: 151—165
[4] Ye L, Haupt K. Anal. Bioanal. Chem., 2004, 378: 1887—1897
[5] Piletsky S A, Turner N W, Laitenberger P. Med. Eng. Phys., 2006, 28: 971—977
[6] Xu Z X, Gao H J, Zhang L M, Chen X Q, Qiao X G. J. Food Sci., 2011, 76: R69—R75
[7] Valtakis G, Andersson L I, Müller R, Mosbach K. Nature, 1993, 361: 645—647
[8] Andersson L I, Müller R, Vlatakis G, Mosbach K. Proc. Natl. Acad. Sci. USA, 1995, 92: 4788—4792
[9] Karlsson J G, Karlsson B, Andersson L I, Nicholls I A. Analyst, 2004, 129: 456—462
[10] Benito-Pea, Moreno-Bondi M C, Aparicio S, Orellana G, Cederfur J, Kempe M. Anal. Chem., 2006, 78: 2019—2027
[11] O'Mahony J, Karlsson B C G, Mizaikoff B, Nicholls I A. Analyst, 2007, 132: 1161—1168
[12] Karlsson B C G, Rosengren A M, Nslund I, Andersson P O, Nicholls I A. J. Med. Chem., 2010, 53: 7932—7937
[13] Wiklander J, Karlsson B C G, Aastrup T, Nicholls I A. Anal. Bioanal. Chem., 2011, 400: 1397—1404
[14] Haupt K, Mayes A G, Mosbach K. Anal. Chem., 1998,70: 3936—3939
[15] Haupt K. React. Funct. Polym., 1999, 41: 125—131
[16] Hunt C E, Pasetto P, Ansell R J, Haupt K. Chem. Commun., 2006, 1754—1756
[17] Vandevelde F, Lechlé T, Ayela C, Bergaud C, Nicu L, Haupt K. Langmuir, 2007, 23: 6490—6493
[18] Lu C H, Zhou W H, Han B, Yang H H, Chen X, Wang X R. Anal. Chem., 2007, 79: 5457—5461
[19] Urraca J L, Moreno-Bondi M C, Orellana G, Sellergren B, Hall A J. Anal. Chem., 2007, 79: 4915—4923
[20] Navarro-Villoslada F, Urraca J L, Moreno-Bondi M C, Orellana G. Sens. Actuators B, 2007, 121: 67—73
[21] Surugiu I, Ye L, Yilmaz E, Dzgoev A, Danielsson B, Mosbach K, Haupt K. Analyst, 2000, 125: 13—16
[22] Surugiu I, Danielsson B, Ye L, Mosbach K, Haupt K. Anal. Chem., 2001, 73: 487—491
[23] Piletsky S A, Piletska E V, Chen B, Karim K, Weston D, Barrett G, Lowe P, Turner A P F. Anal. Chem., 2000, 72: 4381—4385
[24] Piletsky S A, Piletska E V, Bossi A, Karim K, Lowe P, Turner A P F. Biosens. Bioelectron., 2001, 16: 701—707
[25] Wang S, Xu Z X, Fang G Z, Zhang Y, Liu B, Zhu H P. J. Agric. Food Chem., 2009, 57: 4528—4534
[26] Fang G Z, Lu J P, Pan M F, Li W, Ren L, Wang S. Food Anal. Methods, 2011, DOI: 10.1007/s12161-011-9206-4
[27] Li J P, Jiang F Y, Li Y P, Chen Z Q. Biosens. Bioelectron., 2011, 26: 2097—2101
[28] Ye L, Surugiu I, Haupt K. Anal. Chem., 2002, 74: 959—964
[29] Ge Y, Turner A P F. Chem. Eur. J., 2009, 15: 8100—8107
[30] González G P, Hernando P F, Alegría J S D. Anal. Bioanal. Chem., 2009, 394: 963—970
[31] Andersson L I. Anal. Chem., 1996, 68: 111—117
[32] Haupt K, Mosbach K. Tibtech, 1998, 16: 468—475
[33] Yilmaz E, Mosbach K, Haupt K. Anal. Commun., 1999, 36: 167—170
[34] Dickert F L, Lieberzeit P, Tortschanoff M. Sens. Actuators B, 2000, 65: 186—189
[35] Lotierzo M, Henry O Y F, Piletsky S, Tothill I, Cullen D, Kania M, Hock B, Turner A P F. Biosens. Bioelectron., 2004, 20: 145—152
[36] Kempe H, Kempe M. Macromol. Rapid Commun., 2004, 25: 315—320
[37] Kempe H, Kempe M. Anal. Chem., 2006, 78: 3659—3666
[38] Zourob M, Mohr S, Maye A G, Macaskill A, Pérez-Moral N, Fielden P R, Goddard N J. Lab Chip, 2006, 6: 296—301
[39] Wei S T, Molinelli A, Mizaikoff B. Biosens. Bioelectron., 2006, 21: 1943—1951
[40] Yoshimatsu K, Reimhult K, Krozer A, Mosbach K, Sode K, Ye L. Anal. Chim. Acta, 2007, 584: 112—121
[41] Yoshimatsu K, Ye L, Lindberg J, Chronakis I S. Biosens. Bioelectron., 2008, 23: 1208—1215
[42] Guillon S, Lemaire R, Linares A V, Haupt K, Ayela C. Lab Chip, 2009, 9: 2987—2991
[43] Cederfur J, Pei Y X, Meng Z H, Kempe M. J. Comb. Chem., 2003, 5: 67—72
[44] 司汴京(Si B J), 陈长宝(Chen C B), 周杰(Zhou J). 化学进展(Progress in Chemistry), 2009, 21(9): 1813—1819
[45] Subralmanyam S, Piletsky S A, Piletska E V. Biosens. Bioelectron., 2001, 16: 631—637
[46] Piletsky S A, Karim K, Piletska E V. Analyst, 2001, 126: 1826—1830
[47] Chianella I, Lotierzo M, Piletsky S A, Tothill I E, Chen B, Karim K, Turner A P F. Anal. Chem., 2002, 74: 1288—1293
[48] Wei S T, Jakusch M, Mizaikoff B. Anal. Chim. Acta, 2006, 578: 50—58
[1] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[2] 刘育坚, 刘智敏, 许志刚, 李攻科. 搅拌棒吸附萃取技术[J]. 化学进展, 2020, 32(9): 1334-1343.
[3] 谢晓纹, 马晓国, 郭丽慧. 分子印迹聚合物用于环境内分泌干扰物的检测与去除[J]. 化学进展, 2019, 31(12): 1749-1758.
[4] 明魏娜, 王晓艳, 明永飞, 李金花, 陈令新. 核-壳型分子印迹聚合物的制备与应用[J]. 化学进展, 2016, 28(4): 552-563.
[5] 张慧, 何华, 李洁, 李卉, 姚誉阳. 分子印迹水相分离技术及其在分析化学中的应用[J]. 化学进展, 2011, 23(10): 2140-2150.
[6] 杨卫海 吴瑶 张轶 卫晨 严守雷 王清章. 磁性分子印迹聚合物核壳微球的制备及应用*[J]. 化学进展, 2010, 22(09): 1819-1825.
[7] 阚显文 尹宇新 耿志荣 王志林. 基于硅材料的分子印迹聚合物的制备及应用* [J]. 化学进展, 2010, 22(01): 107-112.
[8] 王学军,许振良,杨座国,邴乃慈. 水相识别分子印迹技术[J]. 化学进展, 2007, 19(05): 805-812.