English
新闻公告
More
化学进展 2012, Vol. 24 Issue (05): 823-833 前一篇   后一篇

• 综述与评论 •

基于罗丹明染料的金属阳离子荧光探针

黎俊波, 胡启辉, 曾阳, 余响林, 潘志权*   

  1. 武汉工程大学 绿色化工过程教育部重点实验室 武汉 430073
  • 收稿日期:2011-09-01 修回日期:2011-12-01 出版日期:2012-05-24 发布日期:2012-04-10
  • 基金资助:
    国家自然科学基金项目(No.20901063)、武汉市科技局晨光计划项目(No.201050231049)和绿色化工过程教育部重点实验室项目(No.GCP201003)资助

Rhodamine-Based Fluorescent Probes for Cations

Li Junbo, Hu Qihui, Zeng Yang, Yu Xianglin, Pan Zhiquan   

  1. Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
  • Received:2011-09-01 Revised:2011-12-01 Online:2012-05-24 Published:2012-04-10
罗丹明是以氧杂蒽为母体的碱性呫吨染料,具有优良的光学性质,如延伸到可见光区的吸收及荧光、高的荧光量子产率及大的摩尔吸光系数等,使其成为制备荧光探针的理想生色团。本文综述了近年来用于检测金属阳离子的罗丹明类荧光探针的研究进展,特别是对基于螺酰胺环“关-开”机理、荧光共振能量转移(FRET)机理和光诱导电子转移(PET)机理的罗丹明类铜离子、汞离子、铁离子荧光探针进行了系统的阐述,包括结构特征、检测水平和应用范围。最后提出了这类荧光探针面临的问题与发展趋势。
As one kind of the xanthenes, rhodamine dyes have excellent photophysical properties, such as long absorption and emission wavelengths elongated to visible region, high fluorescence quantum yield, and large absorption coefficient, etc. Therefore, rhodamine-based dyes have become one of the perfect chromophores for making fluorescent probes. In the paper, the recent progress in the studies on rhodamine-based fluorescent probes for metal cations are reviewed. Especially systematically discuss about the rhodamine-based fluorescent probes for copper ion, mercury ion and iron ion that are based on the mechanism of screw amide ring “off-on”, the mechanism of fluorescence resonance energy transfer and the mechanism of photoinduced electron transfer. The structure, detecting level and applications are discussed in detail. Moreover, the problems and developing trends with this kind of fluorescent probe have also been discussed.

Contents
1 Introduction
2 Selective probes for copper ion
3 Selective probes for mercury ion
3.1 Probe with sulfur atoms coordination
3.2 Probe without sulfur atoms coordination
3.3 Probe with mercury ion induced chemical reactions
4 Selective probes for iron ion
5 Selective probes for other metal ions
6 Conclusions and outlook

中图分类号: 

()
[1] Boening D W. Chemosphere, 2000, 40: 1335—1351
[2] Silva J J R F, Williams R J P. The Biological Chemistry of Elements: The Inorganic of life(second ed). New York: Oxford University Press, 2001: 315—335
[3] Nendza M, Herbst T, Kussatz C. Chemosphere, 1997, 35(9): 1875—1885
[4] Lin W Y, Yuan L, Cao X W, Tan W, Feng Y M. Eur. J. Org. Chem., 2008, 29: 4981—4987
[5] Soylak M, Unsal Y E. Food Chem. Toxicol., 2010, 48(6): 1511—1515
[6] Aydin F A, Soylak M. J. Hazard. Mater., 2010, 173(1/3): 669—674
[7] Das S, Vulpe C, Levinson B, Whiteny S, Gitschier J, Packman S. J. Nat. Genet., 1993, 3(1): 7—13
[8] Dujols V, Ford F, Czarnik A W. J. Am. Chem. Soc., 1997, 119(31): 7386—7387
[9] Xiang Y, Tong A J, Jin P Y, Yong J. Org. Lett., 2006, 8(13): 2863—2866
[10] Zhou Y, Wang F, Kim Y, Kim S J, Yoon Y. Org. Lett., 2009, 11(19): 4442—4445
[11] Lee M H, Kim H J, Yoon S, Park N, Kim S J. Org. Lett., 2008, 10(2): 213—216
[12] Zhang J F, Zhou Y, Yoon J, Kim Y, Kim S J, Kim J S. Org. Lett., 2010, 12(17): 3852—3855
[13] Chen X Q, Jou M J, Lee H Y, Kou S, Lim J, Nam S W, Park S, Kim K M, Yoon J. Sensor Actuat B-Chem., 2009, 137: 597—602
[14] Zhang X, Shiraishi Y, Hirai K. Org. Lett., 2007, 9(24): 5039—5042
[15] Zhao Y, Zhang X B, Han Z X, Qiao L, Li C Y, Jian L X, Shen G L, Yu R Q. Anal. Chem., 2009, 81(16): 7022—7030
[16] Yu F B, Zhang W S, Li P, Xing Y L, Tong L L, Ma J P, Tang B. Analyst, 2009, 134: 1826—1833
[17] Yu M X, Shi M, Chen Z G, Li F Y, Li X X, Gao Y H, Xu J, Yang H, Zhou Z G, Yi T, Huang C H. Chem. Eur. J., 2008, 14(23): 6892—6900
[18] Liu J L, Li C Y, Li F Y. J. Mater. Chem., 2011, 21: 7175—7181
[19] Li J B, Yu X L, Pan Z Q, Gao Y, Zeng Y, Hu Q H, Guo J. Sensor Lett., 2011, 9(4): 1331—1341
[20] Gutknecht J. J. Membr. Biol., 1981, 61: 61—66
[21] Clarkson T W, Magos L, Myers G J. New Engl. J. Med., 2003, 349(18): 1731—1737
[22] Von Burg R. J. Appl. Toxicol., 1995, 15(6): 483—493
[23] Ziemba S E, McCabe M J, Rosenspire A. J. Toxicol. Appl. Pharmacol., 2005, 206: 334—342
[24] Guo T L, Miller M A, Shapiro I M. J. Toxicol. Appl. Pharmacol., 1998, 153: 250—257
[25] Renzoni A, Zino F, Franchi E. Environ. Res., 1998, 77(2): 68—72
[26] Bolger P M, Schwetz B A. New Engl. J. Med., 2002, 347(22): 1735—1736
[27] Harris H H, Pickering I J, George G N. Science, 2003, 301(5637): 1203—1203
[28] Grandjean P, Weihe P, White R F, Debes F. Environ. Res., 1998, 77(2): 165—172
[29] Zheng H, Qian Z H, Xu L, Yuan F F, Lan L D, Xu J G. Org. Lett., 2006, 8(5): 859—861
[30] Zhan X Q, Qian Z H, Zheng H, Su B Y, Lan Z, Xu J G. Chem. Commun., 2008, 1859—1861
[31] Chen X Q, Nam C S, Jou M J, Kim Y, Kim S J, Park S, Yoon J. Org. Lett., 2008, 10(22): 5235—5238
[32] Huang J H, Xu Y F, Qian X H. J. Org. Chem., 2009, 74(5): 2167—2170
[33] Huang W, Song C X, He C, Lv G J, Hu X Y, Zhu X, Duan C Y. Inorg. Chem., 2009, 48(12): 5061—5072
[34] Suresh M, Mishra S, Mishra S K, Suresh E, Mandal A K, Shrivastav A, Das A. J. Org. Chem., 2009, 11(13): 2740—2743
[35] Wang H G, Li Y P, Xu S F, Li Y C, Zhou C, Fei X L, Sun L, Zhang C Q, Li Y X, Yang Q B, Xu X Y. Org. Biomol. Chem., 2011, 9: 2850—2855
[36] Wu D Y, Huang W, Duan C Y, Lin Z H, Meng Q J. Inorg. Chem., 2007, 46(5): 1538—1540
[37] Lee M H, Wu J S, Lee J W, Jung J H, Kim J S. Org. Lett., 2007, 9(13): 2501—2504
[38] Shiraishi Y, Sumiya S, Kohno Y, Hirai T. J. Org. Chem., 2008, 73(21): 8571—8574
[39] Yang H, Zhou Z G, Huang K W, Yu M X, Li F Y, Yi T, Huang C H. Org. Lett., 2007, 9(23): 4729—4732
[40] Wu D Y, Huang W, Lin Z H, Duan C Y, He C, Wu S, Wang D H. Inorg. Chem., 2008, 47(16): 7190—7201
[41] Suresh M, Shrivastav A, Mishra S, Serush E, Das A. Org. Lett., 2008, 10(14): 3013—3016
[42] Yuan M J, Zhou W D, Liu X F, Zhu M, Li J B, Yin X D, Zheng H Y, Zuo Z C, Ouyang C B, Liu H B, Li Y L, Zhu D B. J. Org. Chem., 2008, 73(13): 5008—5014
[43] Kumar M, Kumar N, Bhalla V, Singh H, Sharma P R, Kaur T. Org. Lett., 2011, 13(6): 1422—1425
[44] Yang H K, Yook K L, Tae J. J. Am. Chem. Soc., 2005, 127(48): 16760—16761
[45] Ko S K, Yang Y K, Tae J, Shin I. J. Am. Chem. Soc., 2006, 128(43): 14151—14155
[46] Wu J S, Hwang I C, Kim K S, Kim J S. Org. Lett., 2007, 9(5): 907—910
[47] Zhang X L, Xiao Y, Qian X H. Angew. Chem. Int. Ed., 2008, 47: 8025—8029
[48] Shang G Q, Gao X, Chen M X, Zheng H, Xu J G. J. Fluoresc., 2008, 18: 1187—1192
[49] Du J J, Fan J L, Peng X J, Sun P P, Wang J Y, Li H L, Sun S G. Org. Lett., 2010, 12(3): 476—479
[50] Wolfbeis O S. J. Mater. Chem., 2005, 15(27/28): 2657—2669
[51] Meneghini R. Free Radic. Biol. Med., 1997, 23(5): 783—792
[52] Aisen P, Wessling R M, Leibold E A. Curr. Opin. Chem. Biol., 1999, 3(2): 200—206
[53] Eisenstein R S. Annu. Rev. Nutr., 2000, 20: 627—662
[54] Rouault T A. Nat. Chem. Biol., 2006, 2(8): 406—414
[55] Touati D. Arch. Biochem. Biophys., 2000, 373(1): 1—6
[56] Cairo G, Pietrangelo A. Biochem. J., 2000, 352(Pt 2): 241—250
[57] Beutler E, Felitti V, Gelbart T, Ho N. Drug Metab. Dispos., 2001, 29(4): 495—499
[58] Ghaedi M, Shokrollahi A, Mehrnoosh R, Raziyeh O, Soylak M. Cent. Eur. J. Chem., 2008, 6(3): 488—496
[59] Bae S, Tae J. Tetrahedron Lett., 2007, 48(31): 5389—5392
[60] Xiang Y, Tong A. Org. Lett., 2006, 8(8): 1549—1552
[61] Mao J, Wang L N, Dou W, Tang X L, Yan Y, Liu W S. Org. Lett., 2007, 9(22): 4567—4570
[62] Zhang M, Gao Y H, Li M Y, Yu M X, Li F Y, Li L, Zhu M W, Zhang J P, Yi T, Huang C H. Tetrahedron Lett., 2007, 48: 3709—3712
[63] Zhang L Z, Fan J L, Peng X J. Spectrochim. Acta Part A, 2009, 73: 398—402
[64] Dong L, Wu C, Zeng X, Mu L, Xue S F, Tao Z, Zhang J X. Sensor Actuat. B-Chem., 2010, 145: 433—437
[65] Weerasinghe A J, Schmiesing C, Varaganti S, Ramakrishna G, Sinn E. J. Phys. Chem. B, 2010, 114(29): 9413—9419
[66] 张玲菲(Zhang L F), 赵江林(Zhao J L), 曾晞(Zeng X), 牟兰(Mou L), 薛赛风(Xue S F), 陶朱(Tao Z), 卫钢(Wei G). 无机化学(Chinese J. Inorg. Chem.), 2010, 26(10): 1976—1803
[67] 张玲菲(Zhang L F), 郑相勇(Zheng X Y), 曾晞(Zeng X), 牟兰(Mou L), 薛赛风(Xue S F), 陶朱(Tao Z), 张建新(Zhang J X). 无机化学(Chinese J. Inorg. Chem.), 2010, 26(7): 1183—1188
[68] Li J B, Hu Q H, Yu X L, Zeng Y, Cao C C, Liu X W, Guo J, Pan Z Q. J. Fluoresc., 2011, 21: 2005—2013
[69] Kwon J Y, Jang Y J, Lee Y J, Kim K M, Seo M S, Nam W, Yoon J. J. Am. Chem. Soc., 2005, 127(28): 10107—10111
[70] Huang K W, Yang H, Zhou Z G, Yu M X, Li F Y, Gao X, Yi T, Huang C H. Org. Lett., 2008, 10(12): 2557—2560
[71] Zhou Z G, Yu M X, Yang H, Huang K W, Li F Y, Yi T, Huang C H. Chem. Commun., 2008, 3387—3389
[72] Yang Y K, Lee S, Tae J. Org. Lett., 2009, 11(24): 5610—5613
[73] Egorova O A, Seo H, Chatterjee A, Ahn K H. Org. Lett., 2010, 12(3): 401—403
[74] Chatterjee A, Santra M, Won N, Kim S, Kim J K, Kim S B, Ahn K H. J. Am. Chem. Soc., 2009, 131(6): 2040—2041
[75] Jun M E, Ahn K H. Org. Lett., 2010, 12(12): 2790—2793
[76] Kim H, Lee S, Lee J, Tae J. Org. Lett., 2010, 12(22): 5342—5345
[77] Du P W, Lippard S. J. Inorg. Chem., 2010, 49(23): 10753—10755
[1] 傅安辰, 毛彦佳, 王宏博, 曹志娟. 基于二氧杂环丁烷骨架的化学发光探针发展和应用研究[J]. 化学进展, 2023, 35(2): 189-205.
[2] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[3] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[4] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[5] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[6] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[7] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[8] 田浩, 李子木, 汪长征, 许萍, 徐守芳. 分子印迹荧光传感构建及应用[J]. 化学进展, 2022, 34(3): 593-608.
[9] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[10] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[11] 张业文, 杨青青, 周策峰, 李平, 陈润锋. 热激活延迟荧光材料的光物理行为及性能预测[J]. 化学进展, 2022, 34(10): 2146-2158.
[12] 王振, 李曦, 栗园园, 王其, 卢晓梅, 范曲立. 可激活的NIR-Ⅱ探针用于肿瘤成像[J]. 化学进展, 2022, 34(1): 198-206.
[13] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[14] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[15] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.