English
新闻公告
More
化学进展 2012, Vol. 24 Issue (05): 801-809 前一篇   后一篇

• 综述与评论 •

生物质转化合成新能源化学品乙酰丙酸酯

彭林才1, 林鹿2*, 李辉1   

  1. 1. 华南理工大学制浆造纸工程国家重点实验室 广州510640;
    2. 厦门大学能源研究院 厦门361005
  • 收稿日期:2011-09-01 修回日期:2011-11-01 出版日期:2012-05-24 发布日期:2012-04-10
  • 基金资助:
    国家重点基础研究发展计划(973)项目(No.2010CB732201)、国家自然科学基金项目(No.50776035)和中央高校基本业务费专项资金项目(No.2010121077)资助

Conversion of Biomass into Levulinate Esters as Novel Energy Chemicals

Peng Lincai1, Lin Lu2*, Li Hui1   

  1. 1. State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China;
    2. School of Energy Research, Xiamen University, Xiamen 361005, China
  • Received:2011-09-01 Revised:2011-11-01 Online:2012-05-24 Published:2012-04-10
生物质是唯一可替代化石资源获取液态燃料和化学品的可再生资源,近年来由生物质转化合成乙酰丙酸酯引起了研究者们越来越广泛的关注。乙酰丙酸酯是一类重要的化学中间体和新能源化学品,具有高的反应特性和广泛的工业应用价值。目前开发的从生物质资源出发转化合成乙酰丙酸酯的潜在合成途径可概括为4种:直接酸催化醇解法、经乙酰丙酸酯化、经5-氯甲基糠醛醇解和经糠醇醇解。本文分别介绍了这4种转化合成途径的化学反应过程及最新研究进展,从反应合成工艺、催化体系、经济可行性等方面评述了各自的特点与发展趋势,并分析了目前工业规模转化生物质合成乙酰丙酸酯仍面临的一些科学难点。最后,对今后该领域的研究前景进行了展望。
Biomass is the only renewable resources on the earth that can derive liquid fuel and fine chemicals to replace the petroleum-based chemicals. In recent years, the development of bioenergy concerning the synthesis of levulinate esters from biomass via chemical/catalytic process has attracted more and more concerns, and extensive research is being carried out worldwide. Levulinate esters, like methyl levulinate, ethyl levulinate, and butyl levulinate, are a kind of important intermediates and energy chemicals having high reactivity and widespread application in many fields. Up to now, there are four developed potential pathways for the synthesis of levulinate esters from biomass conversion, including the direct acid-catalyzed alcoholysis of biomass, the esterification of levulinic acid that from hydrolysis of biomass, the alcoholysis of 5-(chloromethyl)furfural derived from biomass, and the alcoholysis of furfuryl alcohol that from hydrogenation of furfural. In this review, the chemical reaction process and recent research progress for the above four pathways are introduced. The characteristic and development tendency of these pathways are reviewed from the production process, catalytic system and economic feasibility. Based on the present research situation, the technology and engineering barriers for the conversion of biomass to levulinate esters in commercial scales are analyzed and discussed, and the future research trend in the field is prospected.

Contents
1 Introduction
2 Direct acid-catalyzed alcoholysis of biomass for levulinate esters production
2.1 Alcoholysis process of cellulosic biomass
2.2 Catalytic systems
2.3 Kinetics of biomass alcoholysis
2.4 Side reaction of inter-molecular dehydration of alcohol
3 Levulinate ester synthesis from biomass via levulinic acid
3.1 Synthesis route
3.2 Esterification of levulinic acid
4 Levulinate ester synthesis from biomass via 5-(chloromethyl)furfural
4.1 Synthesis route
4.2 Preparation of 5-(chloromethyl)furfural
4.3 Alcoholysis of 5-(chloromethyl)furfural
5 Levulinate ester synthesis from biomass via furfural and then furfuryl alcohol
5.1 Synthesis route
5.2 Alcoholysis of furfuryl alcohol
6 Conclusion and outlook

中图分类号: 

()
[1] Naik S N, Goud V V, Rout P K, Dalai A K. Renew. Sustain. Energy Rev., 2010, 14: 578—597
[2] 林鹿(Lin L), 何北海(He B H), 孙润仓(Sun R C), 胡若飞(Hu R F). 化学进展(Progress in Chemistry), 2007, 19(7/8): 1206—1216
[3] 孙绍晖(Sun S H), 孙培勤(Sun P Q), 马国杰(Ma G J), 衡明星(Heng M X), 陈俊武(Chen J W). 化学进展(Progress in Chemistry), 2010, 22(9): 1844—1851
[4] Regalbuto J R. Science, 2009, 325: 822—824
[5] Van de Vyver S, Geboers J, Jacobs P A, Sels B F. ChemCatChem, 2011, 3: 82—94
[6] Rowley R L, Wilding W V, Oscarson J L, Zundel N A, Marshall T L, Daubert T E, Danner R P. DIPPR Data Compilation of Pure Compound Properties. New York: Design Institute for Physical Properties AIChE, 2004
[7] Windom B C, Lovestead T M, Mascal M, Nikitin E B, Bruno T J. Energ. Fuel, 2011, 25: 1878—1890
[8] Joshi H, Moser B R, Toler J, Smith W F, Walker T. Biomass Bioenerg., 2011, 35: 3262—3266
[9] Olson E S, Kjelden M R, Schlag A J, Sharma R K. ACS Symp. Ser., 2001, 784: 51—63
[10] Hayes D J. Catal. Today, 2009, 145: 138—151
[11] Gürbüz E I, Alonso D M, Bond J Q, Dumesic J A. ChemSusChem, 2011, 4: 357—361
[12] Hu X, Li C Z. Green Chem., 2011, 13: 1676—1679
[13] Garves K. J. Wood Chem. Technol., 1988, 8: 121—134
[14] Garves K. DE 3621517 A1, 1988
[15] Tarabanko V E, Chernyak M Y, Stukalova Y S, Smirnova M A. Khimiya Rastitel'nogo Syr'ya, 2004, 2: 31—37
[16] Bianchi D, Romano A M. US 0160479A1, 2011
[17] Tominaga K, Mori A, Fukushima Y, Shimada S, Sato K. Green Chem., 2011, 13: 810—812
[18] Peng L C, Lin L, Li H, Yang Q L. Appl. Energ., 2011, 88: 4590—4596
[19] Peng L C, Lin L, Zhang J H, Shi J B, Liu S J. Appl. Catal. A, 2011, 397: 259—265
[20] Deng W P, Liu M, Zhang Q H, Tan X S, Wang Y. Chem. Commun., 2010, 46: 2668—2670
[21] Rataboul F, Essayem N. Ind. Eng. Chem. Res., 2011, 50: 799—805
[22] Saravanamurugan S, van Buu O N, Riisager A. ChemSusChem, 2011, 4: 723—726
[23] 吴晓宇(Wu X Y), 吕秀阳(Lü X Y), 陈天(Chen T), 陈樟女(Chen Z N). 化工学报(CIESC Journal), 2010, 61(10): 2585—2589
[24] Mascal M, Nikitin E B. ChemSusChem, 2010, 3: 1349—1351
[25] Le van Mao R, Zhao Q, Dima G, Petraccone D. Catal. Lett., 2011, 141: 271—276
[26] 彭红(Peng H), 刘玉环(Liu Y H), 张锦胜(Zhang J S), 阮榕生(Ruan R S). 化工进展(Chemical Industry and Engineering Progress), 2009, 28(12): 2237—2241
[27] Bart H J, Reidetschlger J, Schatka K, Lehmann A. Ind. Eng. Chem. Res., 1994, 33: 21—25
[28] Peng L C, Lin L, Zhang J H, Zhuang J P, Zhang B X, Gong Y. Molecules, 2010, 15: 5258—5272
[29] Alonso D M, Bond J Q, Dumesic J A. Green Chem., 2010, 12: 1493—1513
[30] Van de Vyver S, Thomas J, Geboers J, Keyzer S, Smet M, Dehaen W, Jacobs P A, Sels B F. Energ. Environ. Sci., 2011, 4: 3601—3610
[31] 何柱生(He Z S), 赵立芳(Zhao L F). 化学研究与应用(Chemical Research and Application), 2001, 13(5): 537—539
[32] 王树清(Wang S Q), 高崇(Gao C), 李亚芹(Li Y Q). 上海化工(Shanghai Chemical Industry), 2005, 30(4): 14—16
[33] Dharne S, Bokade V V. J. Nat. Gas Chem., 2011, 20: 18—24
[34] Yadav G D, Borkar I V. Ind. Eng. Chem. Res., 2008, 47: 3358—3363
[35] Lee A, Chaibakhsh N, Rahman M B A, Basri M, Tejo B A. Ind. Crop. Prod., 2010, 32: 246—251
[36] Mascal M, Nikitin E B. Angew. Chem. Int. Ed., 2008, 47: 7924—7926
[37] Mascal M, Nikitin E B. Green Chem., 2010, 12: 370—373
[38] Klaas M R G, Schne H. ChemSusChem, 2009, 2: 127—128
[39] Mascal M, Nikitin E B. ChemSusChem, 2009, 2: 859—861
[40] Brasholz M, von Knel K, Hornung C H, Saubern S, Tsanaktsidis J. Green Chem., 2011, 13: 1114—1117
[41] Lange J P, van de Graaf W D, Haan R J. ChemSusChem, 2009, 2: 437—441
[42] Zeitsch K J. The Chemistry and Technology of Furfural and Its Many By-products (Ed. Zeitsch K J). Amsterdam: Elsevier, 2000
[43] Li H X, Zhang S Y, Luo H S. Mater. Lett., 2004, 58: 2741—2746
[44] Hao X Y, Zhou W, Wang J W, Zhang Y Q, Liu S X. Chinese J. Catal., 2005, 26: 935—937
[45] Guigo N, Mija A, Vincent L, Sbirrazzuoli N. Phys. Chem. Chem. Phys., 2007, 9: 5359—5366
[46] Bertarione S, Bonino F, Cesano F, Jain S, Zanetti M, Scarano D, Zecchina A. J. Phys. Chem. B, 2009, 113: 10571—10574
[47] Khusnutdinov R I, Baiguzina A R, Smirnov A A, Mukminov R R, Dzhemilev U M. Russ. J. Appl. Chem., 2007, 80: 1687—1690
[48] Zhang Z H, Dong K, Zhao Z B. ChemSusChem, 2011, 4: 112—118
[49] Kim J S, Lee Y Y, Torget R W. Appl. Biochem. Biotech., 2001, 91/93: 331—340
[50] Ojumu T V, AttahDaniel B E, Betiku E, Solomon B O. Biotechnol. Bioproc. Eng., 2003, 8: 291—293
[51] Zhuang X S, Qi W, Yuan Z H, Wang Q, Tan X S. J. Biobased Mater. Bio., 2010, 4: 35—39
[1] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[2] 李兴龙, 傅尧. 糠醛氧化合成糠酸[J]. 化学进展, 2022, 34(6): 1263-1274.
[3] 曾滴, 刘雪晨, 周沅逸, 王海鹏, 张玲, 王文中. 催化转化呋喃类生物质制备芳香烃化合物的研究[J]. 化学进展, 2022, 34(1): 131-141.
[4] 钱丽华, 蓝国钧, 刘晓艳, 叶清枫, 李瑛. 生物质基分子水相催化加氢反应及多相催化剂[J]. 化学进展, 2019, 31(8): 1075-1085.
[5] 易锦馨, 霍志鹏, AbdullahM.Asiri, KhalidA.Alamry, 李家星. 农林废弃生物质吸附材料在水污染治理中的应用[J]. 化学进展, 2019, 31(5): 760-772.
[6] 谢嘉维, 张香文, 谢君健, 聂根阔, 潘伦, 邹吉军*. 由生物质合成高密度喷气燃料[J]. 化学进展, 2018, 30(9): 1424-1433.
[7] 蒋叶涛, 宋晓强, 孙勇*, 曾宪海, 唐兴, 林鹿*. 基于木质生物质分级利用的组分优先分离策略[J]. 化学进展, 2017, 29(10): 1273-1284.
[8] 魏珺楠, 唐兴, 孙勇, 曾宪海, 林鹿. 新型生物质基平台分子γ-戊内酯的应用[J]. 化学进展, 2016, 28(11): 1672-1681.
[9] 潘伦, 邓强, 鄂秀天凤, 聂根阔, 张香文, 邹吉军. 高密度航空航天燃料合成化学[J]. 化学进展, 2015, 27(11): 1531-1541.
[10] 唐兴, 胡磊, 孙勇, 曾宪海, 林鹿. 生物质基乙酰丙酸选择性还原制备新型平台化合物γ-戊内酯[J]. 化学进展, 2013, 25(11): 1906-1914.
[11] 郭肖, 颜雅妮, 张亚红, 唐颐. 生物质衍生糖多相催化转化[J]. 化学进展, 2013, 25(11): 1915-1927.
[12] 张家仁, 邓甜音, 刘海超*. 油脂和木质纤维素催化转化制备生物液体燃料[J]. 化学进展, 2013, 25(0203): 192-208.
[13] 陈洪章*, 彭小伟. 汽爆技术促进中药资源高值化利用[J]. 化学进展, 2012, (9): 1857-1864.
[14] 胡磊, 孙勇, 林鹿. 离子液体介导制备5-羟甲基糠醛[J]. 化学进展, 2012, 24(04): 483-491.
[15] 张建明, 翟尚儒, 黄德智, 翟滨, 安庆大. 固体杂多酸在生物质水解转化中的应用[J]. 化学进展, 2012, 24(0203): 433-444.