English
新闻公告
More
化学进展 2012, Vol. 24 Issue (05): 790-800 前一篇   后一篇

• 综述与评论 •

基于胆固醇的有机超分子智能凝胶

孔丽, 孙涛, 张峰, 辛飞飞, 郝爱友*   

  1. 山东大学化学与化工学院 济南 250100
  • 收稿日期:2011-09-01 修回日期:2011-12-01 出版日期:2012-05-24 发布日期:2012-04-10

Supramolecular Smart Organogel Based on Cholesterol

Kong Li, Sun Tao, Zhang Feng, Xin Feifei, Hao Aiyou   

  1. School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
  • Received:2011-09-01 Revised:2011-12-01 Online:2012-05-24 Published:2012-04-10
胆固醇分子具有特色的多环、多手性碳结构,因此可用于构筑有机超分子凝胶智能材料。该凝胶体系除了对温度有良好的感知响应性外,对其他的外界刺激,如光、pH、超声等也能够感知并响应。由于胆固醇分子是生命体中普遍存在的生物分子,基于胆固醇的有机超分子智能凝胶在生命现象模拟、药物输运等方面具有天然的优势。本文先根据胆固醇凝胶体系的不同种类,包括光响应型、氧化还原响应型、酸碱响应型、超声响应型,金属离子响应型以及触变响应型等,对该体系的结构与性能进行了介绍,然后介绍了对凝胶因子的修饰方法,最后结合目前的研究现状,探讨了胆固醇有机超分子凝胶的应用方向及前景。
Supramolecular smart organogels based on cholesterol, which has special multi-rings and multi-chiral carbon structures, have been paid much attention during recent years. This kind of gels can exhibit a dramatic change in their properties in response to temperature, as well as other environmental stimulus, such as light, pH and ultrasound. Since cholesterol molecules are the universal class of biological molecules in life, the smart cholesterol-gel materials have potential advantages in life phenomena simulation, drug delivery, etc. In the paper, the structures and properties of the gel system are introduced according to the types of the gel system at first, including photo-responsive, redox-responsive, pH-responsive, ultrasound-responsive, metal ion-responsive and thixotropy-responsive. Then the modification method of the gelator is described. Finally, based on the current developments of the system, the directions and the prospects are pointed out.

Contents
1 Introduction
2 Types and the structures and properties of cholesterol-base intelligent organogels
2.1 Photo-responsive
2.2 Redox-responsive
2.3 PH-responsive
2.4 Ultrasound-responsive
2.5 Metal ion-responsive
2.6 Thixotropy-responsive
3 Synthesis of cholesterol gelators
3.1 Amide bond
3.2 Ester bond
4 Prospects

中图分类号: 

()
[1] Fernández J E. Science, 2007, 315:1807—1810
[2] Liu K Q, He P L, Fang Y. Science China Chemistry, 2011, 54:575—586
[3] Foster J A, Piepenbrock M M, Lloyd G O, Clarke N, Howard J, Steed J W. Nature Chemistry, 2010, 2: 1037—1043
[4] Puigmartí-Luis J, Laukhin V, Pino  P, Vidal-Gancedo J, Rovira C, Laukhina E, Amabilino D B. Angew. Chem. Int. Ed., 2007, 46: 238 —241
[5] Van B, Friggeri A, Shinkai S. Angew. Chem. Int. Ed., 2003, 42: 980—999
[6] Jung J H, John G, Masuda M. Langmuir, 2001, 17: 7229—7232
[7] Abdallah D J, Weiss R G. Adv. Mater., 2000, 12: 1237—1247
[8] Kida T, Marui Y, Miyawaki K, Katob E, Akashi M. Chem. Commun., 2009, 26: 3889—3891
[9] Wang J Q, Weng Y, Liu J, Zhou L, Zhang Z, Chen Q, Yang H. Current Nanoscience, 2009, 5: 245—251
[10] Kuang G, Yan J, Jia X, Li Y, Chen E, Zhang Z, Wei Y. Tetrahedron , 2009, 65: 3496—3501
[11] Jing B, Chen X, Wang X, Zhao Y, Qiu H. Chem Phys Chem, 2008, 9: 249—252
[12] Lin Y, Weiss R G. Macromolecules, 1987, 20: 414—417
[13] Lin Y, Kachar B, Weiss R G. J. Am. Chem. Soc., 1989, 111: 5542—5551
[14] 周维善(Zhou W S),庄治平(Zhuang Z P).甾体化学进展(Progress in Steroid Chemistry).北京(Beijing): 科学出版社(Science Press),2002
[15] Xue M, Liu K, Peng J, Zhang Q, Fang Y. Journal of Colloid and Interface Science, 2008, 327: 94—101
[16] Xue M, Gao D, Liu K Q, Peng J X, Fang Y. Tetrahedron, 2009, 65: 3369—3377
[17] ini Dc' M, Vtle F, Fages F. Top. Curr. Chem., 2005, 256: 39—76
[18] Sangeetha N M, Maitra U. Chem. Soc. Rev., 2005, 34: 821—836
[19] Terech P, Weiss R G. Chemical Reviews, 1997, 97: 3133—3160
[20] Dürr H. Henri B L. Photochromism: Molecules and Systems. Amsterdam: Elsevier, 1990. 15—30
[21] Cano J, Guglielmetti R. Organic Photochromic and Thermochromic Compounds. New York: Plenum Press, 1999
[22] Wang S, Shen W, Feng Y, Tian H. Chem. Commun., 2006, 14: 1497—1499
[23] Murata K, Aoki M, Suzuki T, Harada T, Kawabata H, Komori T, Ohseto F, Ueda K, Shinkai S. J. Am. Chem. Soc., 1994, 116: 6664—6676.
[24] Ono Y, Nakashima K, Sano M, Hojo J, Shinkai S. J. Mater. Chem., 2001, 11: 2412—2419
[25] Ono Y, Nakashima K, Sano M, Kanekiyo Y, Inoue K, Hojo J, Shinkai S. Chem. Commun., 1998, 14: 1477—1478
[26] Kawabata H, Murata K, Harada T, Shinkai S. Langmuir, 1995, 11: 623—626
[27] Koumura N, Kudo M, Tamaoki N. Langmuir, 2004, 20: 9897—9900
[28] Nagasawa J, Kudo M, Hayashi S, Tamaoki N. Langmuir, 2004, 20: 7907—7916
[29] Díaz D D, Cid J J, Vzquez P, Torres T. Chem. Eur. J.,2008, 14: 9261—9273
[30] Feng G L, Xiong Y, Wang H., Electrochemical Acta, 2008, 28: 8253—8257
[31] Kawano S, Fujita N, Shinkai S. J. Am. Chem. Soc., 2004, 126: 8592—8593
[32] Kawano S, Fujita N, Shinkai S. Chem. Eur. J., 2005, 11: 4735—4742
[33] Wang C, Sun F,Zhang D, Zhang G, Zhu D. Chin. J. Chem., 2010, 28: 622—626
[34] Zhao Y, Aprahamian I, Trabolsi A, Erina N, Stoddart J F. J. Am. Chem. Soc., 2008, 130: 6348—6350
[35] Liu J, He P, Yan J, Fang X, Peng J, Liu K, Fang Y. Adv. Mater., 2008, 20: 2508—2511
[36] Liu J, Yan J, Yuan X, Liu K, Peng J, Fang Y. Journal of Colloid and Interface Science, 2008, 318: 397—404
[37] Yan J L, Liu J, Sun Y H, Jing P, He P L, Gao D, Fang Y. J. Phys. Chem. B, 2010, 114: 13116—13120
[38] Li Y, Liu K, Liu J, Peng J, Feng X, Fang Y. Langmuir, 2006, 22: 7016—7020
[39] Liu K, Yan N, Peng J, Liu J, Zhang Q, Fang Y. Journal of Colloid and Interface Science, 2008, 327: 233—242
[40] He P, Liu J, Liu K, Ding L, Yan J, Gao D, Fang Y. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2010, 362: 127—134
[41] Sugiyasu K, Fujita N, Takeuchi M, Yamada S, Shinkai S. Org. Biomol. Chem., 2003, 896: 895—899
[42] 黄池宝(Huang C B),易道生(Yi D S), 冯承浩(Feng C H), 任安祥(Ren A X),孙世国(Sun S G). 化学进展(Progress in Chemistry), 2010, 22(12): 2368—2379
[43] 覃兆海(Qin Z H), 陈馥衡(Chen F H), 谢毓元(Xie Y Y). 化学进展(Progress in Chemistry), 1998, 10(1): 63—72
[44] Naota T, Hiroshi K. J. Am. Chem. Soc., 2005, 127: 9324—9325
[45] Paulusse J M, Sijbesma R P. Angew. Chem. Int. Ed., 2004, 116: 4560—4562
[46] Paulusse J M, Sijbesma R P. Angew. Chem. Int. Ed., 2006, 45: 2334—2337
[47] valos M, Babiano R, Cintas P, Gómez-Carretero A, Jiménez J L, Lozano M, Ortiz A L, Palacios J C, Pinazo A. Chem. Eur. J., 2008, 14: 5656—5669
[48] Li Y, Wang T, Liu M. Tetrahedron, 2007, 63: 7468—7473
[49] Wu J, Yi T, Shu T, Yu M, Zhou Z, Xu M, Zhou Y, Zhang H, Han J, Li F, Huang C. Angew. Chem. Int. Ed., 2008, 47: 1063—1067
[50] Wu J, Yi T, Xia Q, Zou Y, Liu F, Dong J, Shu T, Li F, Huang C. Chem. Eur. J., 2009, 15: 6234—6243
[51] Yu X, Liu Q, Wu J, Zhang M, Cao X, Zhang S, Wang Q, Chen L, Yi T. Chem. Eur. J., 2010, 16: 9099—9106
[52] Dou C, Li D, Gao H, Wang C, Zhang H, Wang Y. Langmuir, 2010, 26: 2113—2118
[53] Murata K, Aoki M, Nishi T, lkedab A, Shinkai S, Murata K, Aoki K, Nishi T, Ikeda A, Shinkai S. J. Chem. Soc. Chem. Commun., 1991, 53: 1715—1717
[54] Kawano S, Fujita N, Kjeld J, Bommel C, Shinkai S. Chemistry Letters, 2003, 32: 12—13
[55] Kim T H, Kwon N Y, Lee T S. Tetrahedron Letters, 2010, 51: 5596—5600
[56] 吕凤婷(Lv F T),高莉宁(Gao L N), 房喻(Fang Y). 化学进展(Progress in Chemistry), 2005, 17(5): 773—779
[57] 刘淑娟(Liu S J),赵强(Zhao Q). 化学进展(Progress in Chemistry), 2008, 20(11): 1708—1715
[58] Van Esch J H, Schoonbeek F, de Loos M, Kooijman H, Spek A L, Kellogg R M, Feringa B L. Chem. Eur. J., 1999, 5: 937—950
[59] Huang X, Raghavan S R, Terech P, Weiss R G. J. Am. Chem. Soc., 2006, 128: 15341—15352
[60] Huang X, Terech P, Raghavan S R, Weiss R G. J. Am. Chem. Soc., 2005, 127: 4336—4344
[61] Li Y Y, Liu J, Du G Y, Yan H, Wang H, Zhang H C, An W, Zhao W J, Sun T, Xin F F, Kong L, Li Y M, Hao A Y, Hao J C. J. Phys. Chem. B, 2010, 114: 10321—10326
[62] Zhao W J, Li Y Y, Sun T, Yan H, Hao A Y, Xin F F, Zhang H C, An W, Kong L, Li Y M. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2011, 374: 115—120
[63] Li Y Y, Zhao W J, Zhang H C, Sun T, An W, Xin F F, Hao A Y. Chinese Chemical Letters, 2010, 21: 1251—1254
[64] Lee S M, Chen H, OHalloran T V, Nguyen S T. J. Am. Chem. Soc., 2009, 131: 9311—9320
[65] Lim E K, Huh Y M, Yang J, Lee K, Suh J S, Haam S. Adv. Mater., 2011, 23: 2436—2442
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[5] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[6] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[7] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[8] 曹新华, 韩晴晴, 高爱萍, 王桂霞. 气态酸和有机胺响应的超分子凝胶[J]. 化学进展, 2021, 33(9): 1538-1549.
[9] 陈永杭, 李欣芳, 余伟江, 王幽香. 刺激响应聚合物微针在经皮给药中的应用[J]. 化学进展, 2021, 33(7): 1152-1158.
[10] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[11] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[12] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[13] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[14] 张鹏, 郭心洁, 张倩, 丁彩凤. 有机染料聚集在光化学传感中的应用[J]. 化学进展, 2020, 32(2/3): 286-297.
[15] 侯瑞, 李桂群, 张岩, 李明俊, 周桂明, 柴晓明. 基于超分子聚合物的自修复材料[J]. 化学进展, 2019, 31(5): 690-698.