English
新闻公告
More
化学进展 2012, Vol. 24 Issue (05): 784-789 前一篇   后一篇

所属专题: 计算化学

• 综述与评论 •

计算机辅助蛋白质分子理性设计:从肌红蛋白到一氧化氮还原酶

林英武1,2*   

  1. 1. 南华大学化学化工学院 衡阳 421001;
    2. 南京大学配位化学国家重点实验室 南京 210093
  • 收稿日期:2011-09-01 修回日期:2011-12-01 出版日期:2012-05-24 发布日期:2012-04-10
  • 基金资助:
    国家自然科学基金青年基金项目(No.21101091)、南京大学配位化学国家重点实验室开放基金项目、湖南省自然科学基金青年基金项目(No.11JJ4017)和湖南省教育厅青年基金项目(No.11B105)资助

Computer-Aided Rational Protein Design: From Myoglobin to Nitric Oxide Reductases

Lin Yingwu1,2*   

  1. 1. School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China;
    2. State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China
  • Received:2011-09-01 Revised:2011-12-01 Online:2012-05-24 Published:2012-04-10
计算机辅助蛋白质分子理性设计在解决化学及生物学重要问题中被证实十分有效。在NOR本身三维结构未知的情况下通过计算机分子模拟,使用肌红蛋白(Mb)作为蛋白质分子模型,设计了结构功能型一氧化氮还原酶(NOR),所设计的NOR蛋白质模型——FeBMb一年后被天然NOR的晶体结构所证实。本文综述了设计FeBMb, I107E FeBMb以及FeBMb(-His)的研究过程及其设计合理性,评述了通过使用计算机分子模拟,获得Mb处于双组氨酸配位的非天然状态的原子层次结构信息,而这些信息很难通过实验方法来获得。计算机辅助蛋白质分子理性设计的广泛应用将会为生物体系提供更深刻的内涵。
Computer-aided rational protein design was demonstrated to be effective in addressing important issues in chemistry and biology. With computer simulation, a structural and functional nitric oxide reductase (NOR) was successfully designed using myoglobin (Mb) as a protein model, which was accomplished at the time with no three dimensional structure available for NOR itself. More importantly, the designed NOR protein model, FeBMb, was confirmed by an X-ray structure of native NOR one year later. The progress and rationalities of design of FeBMb, I107E FeBMb, as well as FeBMb(-His), were reviewed herein. The use of molecular simulation to obtain atomic structural information on Mb in a non-native state with bis-Histidine coordination was also highlighted, as the information was otherwise difficult to obtain experimentally. The general application of computer-aided rational protein design will provide deep insight into biological systems.

Contents
1 Introduction
2 Myoglobin: an ideal scaffold for protein molecular design
3 Nitric oxide reductase: both a chance and a challenge for protein molecular design
4 Exploring unknown areas: ongoing of protein molecular design
5 Conclusion and outlook

中图分类号: 

()
[1] Lu Y, Yeung N, Sieracki N, Marshall N M. Nature, 2009, 460: 855—862
[2] Samish I, MacDermaid C M, Perez-Aguilar J M, Saven J G. Annu. Rev. Phys. Chem., 2011, 62: 129—149
[3] Saven J G. Curr. Opin. Chem. Biol., 2011, 15: 452—457
[4] Nanda V, Koder R L. Nat. Chem., 2010, 2: 15—24
[5] Lutz S. Curr. Opin. Biotechnol., 2010, 21: 734—743
[6] Saven J G. Curr. Opin. Colloid Interface Sci., 2010, 15: 13—17
[7] Mandell D J, Kortemme T. Nat. Chem. Biol., 2009, 5: 797—807
[8] Damborsky J, Brezovsky J. Curr. Opin. Chem. Biol., 2009, 13: 26—34
[9] Kang S G, Saven J G. Curr. Opin. Chem. Biol., 2007, 11: 329—334
[10] Lippow S M, Tidor B. Curr. Opin. Biotechnol., 2007, 18: 305—311
[11] Regan L, DeGrado W F. Science, 1988, 241: 976—978
[12] Hecht M H, Richardson J S, Richardson D C, Ogden R C. Science, 1990, 249: 884—891
[13] Robertson D E, Farid R S, Moser C C, Urbauer J L, Mulholland S E, Pidikiti R, Lear J D, Wand A J, DeGrado W F, Dutton P L. Nature, 1994, 368: 425—432
[14] Kaplan J, DeGrado W F. Proc. Natl. Acad. Sci. USA, 2004, 101: 11566—11570
[15] Jiang L, Althoff E A, Clemente F R, Doyle L, Rthlisberger D, Zanghellini A, Gallaher J L, Betker J L, Tanaka F, Barbas C F Ⅲ, Hilvert D, Houk K N, Stoddard B L, Baker D. Science, 2008, 319: 1387—1391
[16] Yeung N, Lin Y W, Gao Y G, Zhao X, Russell B S, Lei L, Miner K D, Robinson H, Lu Y. Nature, 2009, 462: 1097—1082
[17] Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, Murata T, Iwata S, Shiro Y. Science, 2010, 330: 1666—1670
[18] Lu Y, Berry S M, Pfister T D. Chem. Rev., 2001, 101: 3047—3080
[19] Lu Y. Curr. Opin. Chem. Biol., 2005, 9: 118—126
[20] Lu Y. Angew. Chem. Int. Ed., 2006, 45: 5588—5601
[21] Lu Y. Inorg. Chem., 2006, 45: 9930—9940
[22] Lu Y, Garner D K, Zhang J L. Wiley Encyclopedia of Chemical Biology, 2008, 1—10
[23] Watanabe Y. Curr. Opin. Chem. Biol., 2002, 6: 208—216
[24] Watanabe Y, Nakajima H, Ueno T. Acc. Chem. Res., 2007, 40: 554—562
[25] Ueno T, Abe S, Yokoi N, Watanabe Y. Coord. Chem. Rev., 2007, 251: 2717—2731
[26] Abe S, Ueno T, Watanabe Y. Top Organomet. Chem., 2009, 25: 25—43
[27] Matsuo T, Fukumoto K, Watanabe T, Hayashi T. Chem. Asian J., 2011, 6: 2491—2499
[28] Shoji O, Watanabe Y. Metallomics, 2011, 3: 379—388
[29] Oohora K, Onoda A, Kitagishi H, Harada A, Hayashi T. Chem. Sci., 2011, 2: 1033—1038
[30] 林英武(Lin Y W), 黄仲贤(Huang Z X). 化学进展(Progress in Chemistry), 2006, 18(6): 794—800
[31] 林英武(Lin Y W), 黄仲贤(Huang Z X). 世界科技研究与发展(World Science-Technology R&D), 2006, 28(1): 8—13
[32] 林英武(Lin Y W). 化学进展(Progress in Chemistry), 2010, 22(6): 1203—1211
[33] Lin Y W, Wu Y M, Liao L F. J. Mol. Model., 2012, 18: 1591—1596
[34] Cohen J, Arkhipov A, Braun R, Schulten K. Biophys. J., 2006, 91: 1844—1857
[35] Urayama P, Phillips G N Jr, Gruner S M. Structure, 2002, 10: 51—60
[36] Sigman J A, Kwok B C, Lu Y. J. Am. Chem. Soc., 2000, 122: 8192—8196
[37] Sigman J A, Kim H K, Zhao X, Carey J R, Lu Y. Proc. Natl. Acad. Sci. USA, 2003, 100: 3629—3634
[38] Watmough N J, Field S J, Hughes R J L, Richardson D J. Biochem. Soc. Trans., 2009, 37: 392—399
[39] Pereira M M, Sousa F L, Verissimo A F, Veríssimo A F, Teixeira M. Biochim. Biophys. Acta, 2008, 1777: 929—934
[40] Reimann J, Flock U, Lepp H, Honiqmann A, Adelroth P. Biochim. Biophys. Acta, 2007, 1767: 362—373
[41] Butland G, Spiro S, Watmough N J, Richardson D J. J. Bacteriol., 2001, 183: 189—199
[42] Blomberg L M, Blomberg M R, Siegbahn P E. Biochim. Biophys. Acta, 2006, 1757: 240—252
[43] Zhao X, Yeung N, Russell B S, Garner D K, Lu Y. J. Am. Chem. Soc., 2006, 128: 6766—6767
[44] Pinakoulaki E, Varotsis C. J. Inorg. Biochem., 2008, 102: 1277—1287
[45] Lin Y W, Yeung N, Gao Y G, Zhao X, Russell B S, Lei L, Miner K D, Robinson H, Lu Y. Proc. Natl. Acad. Sci. USA, 2010, 107: 8581—8586
[46] Hayashi T, Miner K D, Yeung N, Lin Y W, Lu Y, Mo nne-Loccoz P. Biochemistry, 2011, 50: 5939—5947
[47] Yeung N, Lu Y. Chem. Biodiversity, 2008, 5: 1437—1454
[48] Kovaleva E G, Lipscomb J D. Nat. Chem. Biol., 2008, 4: 186—193
[49] Leitgeb S, Nidetzky B. Biochem. Soc. Trans., 2008, 36: 1180—1186
[50] Sievert S M, Scott K M, Klotz M G, Chain P S, Hauser L J, Hemp J, Hügler M, Land M, Lapidus A, Larimer F W, Lucas S, Malfatti S A, Meyer F, Paulsen I T, Ren Q, Simon J, The USF Genomics Class. Appl. Environ. Microbiol., 2008, 74: 1145—1156
[51] Lin Y W, Yeung N, Gao Y G, Miner K D, Tian S, Robinson H, Lu Y. J. Am. Chem. Soc., 2010, 132: 9970—9972
[52] Lin Y W. Proteins, 2011, 79: 769—684
[53] Wang W H, Wang Y H, Lu J X, Wang J H, Xie Y, Huang Z X. Chem. Lett., 2002, 674—675
[54] Lin Y W, Wang W H, Zhang Q, Lu H J, Yang P Y, Xie Y, Huang Z X, Wu H M. ChemBioChem, 2005, 6: 1356—1359
[55] Wang Z H, Lin Y W, Rosell F I, Ni F Y, Lu H J, Yang P Y, Tan X S, Li X Y, Huang Z X, Mauk A G. ChemBioChem, 2007, 8: 607—609
[56] Ying T, Zhong F, Wang Z H, Li W, Tan X, Huang Z X. ChemBioChem, 2011, 12: 707—710
[57] Lin Y W, Nie C M, Liao L F. J. Mol. Model, 2012, in press
[1] 傅安辰, 毛彦佳, 王宏博, 曹志娟. 基于二氧杂环丁烷骨架的化学发光探针发展和应用研究[J]. 化学进展, 2023, 35(2): 189-205.
[2] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[3] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[4] 蒋云波, 李欢欢, 陶冶, 陈润锋, 黄维. 热活化延迟荧光聚合物及其电致发光器件[J]. 化学进展, 2019, 31(8): 1116-1128.
[5] 林英武. 人工金属酶分子设计新进展:肌红蛋白研究实例分析[J]. 化学进展, 2018, 30(10): 1464-1474.
[6] 牟思阳, 郭静, 于春芳, 宫玉梅, 张森. ATRP大分子引发剂的合成及应用[J]. 化学进展, 2015, 27(5): 539-549.
[7] 任彦荣, 田菲菲, 周鹏*. 计算肽学[J]. 化学进展, 2012, (9): 1674-1682.
[8] 杨立江, 邵强, 高毅勤*. 分子模拟中的增强抽样方法[J]. 化学进展, 2012, 24(06): 1199-1213.
[9] 闫燕, 杨启炜, 邢华斌*, 苏宝根, 任其龙. 离子液体表/界面性质与结构[J]. 化学进展, 2012, 24(05): 659-673.
[10] 郑燕升, 卓志昊, 莫倩, 李军生. 离子液体的分子模拟与量化计算[J]. 化学进展, 2011, 23(9): 1862-1870.
[11] 林英武. 蛋白质功能的扩展与人工金属结合位点的理性设计[J]. 化学进展, 2010, 22(06): 1203-1211.
[12] 王明华 王剑平. 分子模拟在生物传感器研究中的应用[J]. 化学进展, 2010, 22(05): 845-851.
[13] 何淑漫 周健. 抗凝血生物材料*[J]. 化学进展, 2010, 22(04): 760-772.
[14] 赵建新 乔义涛 袁直. 合成受体与短肽相互作用研究进展*[J]. 化学进展, 2009, 21(10): 2123-2131.
[15] 章爱娟,谢韵,周健. 蛋白质界面取向的实验控制与表征* [J]. 化学进展, 2009, 21(0708): 1408-1417.