English
新闻公告
More
化学进展 2012, Vol. 24 Issue (05): 757-768 前一篇   后一篇

• 综述与评论 •

Ni2P加氢脱硫催化剂

宋华1,2, 代敏1, 宋华林3*   

  1. 1. 东北石油大学化学化工学院 大庆 163318;
    2. 东北石油大学化学化工学院 石油与天然气化工省 重点实验室 大庆 163318;
    3. 牡丹江医学院 医学影像学院 牡丹江 157011
  • 收稿日期:2011-08-01 修回日期:2012-01-01 出版日期:2012-05-24 发布日期:2012-04-10
  • 基金资助:
    黑龙江省科技厅项目(No.2009G0947-00)和研究生创新基金项目资助

Ni2P Catalyst for Hydrodesulfurization

Song Hua1,2, Dai Min1, Song Hualin3*   

  1. 1. College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China;
    2. Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, China;
    3. Department of Image College, Mudanjiang Medical University, Mudanjiang 157011, China
  • Received:2011-08-01 Revised:2012-01-01 Online:2012-05-24 Published:2012-04-10
环境法规对硫氧化物脱出的限制日益严格以及原油品质的不断下降,使得有必要研发高效的加氢脱硫催化剂。Ni2P由于具有优异的加氢脱硫活性和稳定性,引起了广泛的关注。本文综述了Ni2P加氢脱硫催化剂的特性、反应活性相、制备方法、改进和加氢脱硫活性等方面的研究进展。在Ni2P中存在两种不同的初始活性位,四面体几何构型的Ni(1)初始活性位在加氢脱硫反应中参与直接脱硫反应,四方锥几何构型的Ni(2)初始活性位则与催化剂的高加氢活性有关。在加氢脱硫反应中,催化剂表面生成的NixSyP相被认为是真正的活性相。制备Ni2P的方法主要是程序升温还原和液相合成。载体、助剂和络合剂对Ni2P活性相的形成和催化剂的活性有重要影响。相比于商用硫化物催化剂,Ni2P催化剂对噻吩、二苯并噻吩和4,6-二甲基二苯并噻吩均表现出更高的加氢脱硫活性。
More and more rigorous environmental regulations limiting the emissions of sulfur dioxide and the continuing decline in the quality of petroleum feedstocks have given rise to the need for investigation and development of high-performance hydrodesulfurization (HDS) catalysts. This paper provides a review of recent progress in the characteristics, active phase, synthesis, modification and HDS catalytic performance of Ni2P catalyst. There are two types of initial active sites in Ni2P. The Ni(1) initial active sites have a tetrahedral geometry, and which are involved in the direct desulfurization pathway in HDS. The Ni(2) initial active sites have a square pyramidal geometry, and which are responsible for the high catalytic activity in the hydrogenation pathway in HDS. A surface nickel phosphosulfide phase may be formed under HDS reaction, and which is considered as the real active phase. Ni2P is mainly prepared by temperature-programmed reduction and liquid phase synthesis. The support, promoter and complex agent have important effect on the formation of Ni2P active phase, as well as the catalytic activity. Compared with commercial sulfide catalyst, the Ni2P catalyst shows higher HDS activity for thiophene, dibenzothiophene and 4, 6-dimethyldibenzothiophene.

Contents
1 Introduction
2 Crystal characteristics of Ni2P
3 Active phase of Ni2P in HDS
4 Synthesis of Ni2P catalysts
4.1 Temperature programmed reduction
4.2 Liquid phase synthesis
4.3 Other synthesis
5 Modification of Ni2P
6 HDS catalytic performance of Ni2P catalyst
7 Summary and perspective

中图分类号: 

()
[1] Ho T C. Catal. Today, 2004, 98: 3—18
[2] 张润香(Zhang R X), 孙翔兰(Sun X L), 刘功德(Liu G D), 佘海(She H). 润滑油(Lubricating Oil), 2011, 26(1) 50—55
[3] Oyama S T. J. Catal., 2003, 216: 343—352
[4] Tanmoy D, Sudipta D, Abhijit M. Physica. B, 2005, 367: 6—18
[5] Furimsky E. Appl. Catal. A-Gen., 2003, 240: 1—3
[6] Ren J, Wang J G, Li J F, Li Y W. J. Fuel Chem. Tech., 2007, 35(4): 458—464
[7] Stinner C, Tang Z, Haouas M, Weber T, Prins R. J. Catal., 2002, 208(2): 456—466
[8] Delsante S, Schmetterer C, Ipser H, Borzone G. J. Chem. Eng. Data, 2010, 55: 3468—3473
[9] Fuks D, Vingurt D, Landau M V, Herskowitz M. J. Phys. Chem. C, 2010, 114: 13313—13321
[10] Stephanie L B, Keerthi S. J. Solid State Chem., 2008, 181: 1552—1559
[11] Rundqvist S. Acta Chem. Scand, 1962, 16(2): 992—998
[12] Oyama S T, Gott T, Zhao H, Lee Y K. Catal. Today, 2009, 143: 96—107
[13] Lee Y K, Oyama S T. J. Catal., 2006, 239: 376—389
[14] Kanama D, Oyama S T, Otani S, Cox D F. Surf. Sci., 2004, 552: 8—16
[15] Nelson A E, Sun M G, Junaid A S M. J. Catal., 2006, 241: 181—187
[16] Moula M G, Suzuki S, Chun W J, Otani S, Oyama S T, Asakura K. Surf. Interface Anal., 2006, 38: 1611—1614
[17] Kinoshita K, Simon G H, Knig T, Heyde M, Freund H J, Nakagawa Y, Suzuki S, Chun W J, Oyama S T, Otani S, Asakura K. Jpn. J. Appl. Phys., 2008, 47: 6088—6091
[18] Edamoto K, Nakadai Y, Inomata H, Ozawa K, Otani S. Solid State Commun., 2008, 148: 135—138
[19] Edamoto K, Inomata H, Ozawa K, Nakagawa Y, Asakura K, Otani S. Solid State Commun., 2010, 150: 1120—1123
[20] Guo D H, Nakagawa Y, Ariga H, Suzuki S, Kinoshita K, Miyamoto T, Takakusagi S, Asakura K, Otani S, Oyama S T. Surf. Sci., 2010, 604: 1347—1352
[21] Startsev A N. Catal. Rev. Sci. Eng., 1995, 37(3): 353—423
[22] Chianelli R R, Daage M, Ledoux M J. Adv. Catal., 1994, 40: 177—232
[23] Ratnasamy P, Silvasanker S. Catal. Rev. Sci. Eng., 1980, 22: 401—429
[24] S D' rensen O, Clausen B S, Candia R, Tops D' e H. Appl. Catal. A-Gen., 1985, 13: 363—372
[25] Teh C H. Catal. Today, 2004, 98: 3—18
[26] Bouwens S M A M, Vanzon F B M, Vandijk M P, Vanderkraan A M, Debeer V H J, Vanveen J A R, Koningsberger D C. J. Catal., 1994, 146: 375—393
[27] José J A, Rodriguez A, Kim J Y, Hanson J C, Sawhill S J, Bussell M E. J. Phys. Chem. B, 2003, 107: 6276—6285
[28] Landau M V, Herskowitz M, Hoffman T, Fuks D, Liverts E, Vingurt D, Froumin N. Ind. Eng. Chem. Res., 2009, 48: 5239—5249
[29] Rodriguez J A. J. Phys. Chem. B, 1997, 101: 7524—7534
[30] Oyama S T, Lee Y K. J. Catal., 2008, 258 : 393—400
[31] Cho K S, Lee Y K. Nucl. Instrum. Meth. A, 2010, 621: 690—694
[32] Liu P, Rodriguez J A, Asakura T, Gomes J, Nakamura K. J. Phys. Chem. B, 2005, 109, 4575 —4583
[33] Liu P, Rodriguez J A. J. Am. Chem. Soc., 2005, 127: 14871—14878
[34] Oyama S T, Wang X, Lee Y K, Chun W J. J. Catal., 2004, 221: 263—273
[35] Shu Y Y, Lee Y K, Oyama S T. J. Catal., 2005, 236: 115—117
[36] Kawai T, Sato S, Chun W J, Asakura K, Bando K K, Matsui T, Yoshimura Y, Kubota T, Okamoto Y, Lee Y K, Oyama S T. Chem. Lett., 2003, 32: 956—957
[37] Kawai T, Sato S, Chun W J, Asakura K, Bando K K, Matsui T, Yoshimura Y, Kubota T, Okamoto Y, Lee Y K, Oyama S T. Phys. Scr., 2004, T115: 822—824
[38] Kawai T, Bando K K, Lee Y K, Oyama S T, Chun W J, Asakura K. J. Catal., 2006, 241: 21—23
[39] Oyama S T, Wang X, Lee Y K, Bando K, Requejo F G. J. Catal., 2002, 210: 207—217
[40] Tauster S J, Pecoraro T A, Chianelli R R. J. Catal., 1980, 63: 515—519
[41] Duan X P, Teng Y, Wang A J, Kogan V M, Li X, Wang Y. J. Catal., 2009, 261: 232—240
[42] Oyama S T, Gott T, Asakura K, Takakusagi S, Miyazaki K, Koike Y, Bando K K. J. Catal., 2009, 268: 209—222
[43] Guan J, Wang Y, Qin M L, Yang Y, Li X, Wang A J. J. Solid State Chem., 2009, 182: 1550—1551
[44] Shu Y Y, Oyama S T. Carbon, 2005, 43: 1518—1532
[45] Wang X Q, Clark P, Oyama S T. J. Catal., 2002, 208: 321—331
[46] Lee Y K, Shu Y Y, Oyama S T. Appl. Catal. A-Gen., 2007, 322: 191—204
[47] Wang A J, Ruan L F, Teng Y, Li X, Lu M H, Ren J, Wang Y, Hu Y K. J. Catal., 2005, 229: 314—321
[48] Sawhill S J, Layman K A, Wyk D R V, Engelhard M H, Wang C G, Bussell M E. J. Catal., 2005, 231: 300—313
[49] Lee Y K, Shu Y Y, Oyama S T. Appl. Catal. A-Gen., 2007, 322: 191—204
[50] Wei N, Ji S F, Wu P Y, Guo Y N, Liu H, Zhu J Q, Li C Y. Catal. Today, 2009, 147S: 66—70
[51] Stinner C, Tang Z, Haouas M, Weber T, Prins R. J. Catal., 2002, 208(2): 456—466
[52] Clark P, Li W, Oyama S T. J. Catal., 2001, 200(1): 140—147
[53] Wang X, Clark P, Oyama S T. J. Catal., 2002, 208(2): 321—331
[54] Clark P, Wang X, Oyama S T. J. Catal., 2002, 207(2): 256—265
[55] Sawhill S J, Phillips D C, Bussell M E. J. Catal., 2003, 215(2): 208—219
[56] Rodriguez J A, Kim J Y, Hanson J C, Sawhill S J, Bussell M E. J. Phys. Chem. B, 2003, 107(26): 6276—6285
[57] Tamás I K, Alessandro E C, Emiel J M H, Ryong R, Hei S K, éva P, Zsolt K. Appl. Catal. A-Gen., 2009, 365: 48—54
[58] Yang S, Liang C, Prins R. J. Catal., 2006, 237(1): 118—130
[59] Berhault G, Afanasiev P, Loboue H, Geantet C, Cseri T, Pichon C, Guillot D C, Lafond A. Inorg. Chem., 2009, 48(7): 2985—2992
[60] Su H L, Xie Y, Li B, Liu X M, Qian Y T. Solid State Ionics, 1999, 122: 157—160
[61] Wang X, Wan F Q, Gao Y J, Liu J, Jiang K. J. Cryst. Growth, 2008, 310: 2569—2574
[62] Liu S L, Liu X Z, Xu L Q, Qian Y T, Ma X C. J. Cryst. Growth, 2007, 304: 430—434
[63] Liu J W, Chen X Y, Shao M W, An C H, Yu W C, Qian Y T. J. Cryst. Growth, 2003, 252: 297—301
[64] Liu Z Y, Huang X, Zhu Z B, Dai J H. Ceram. Int., 2010, 36: 1155—1158
[65] Chen Y Z, She H D, Luo X H, Yue G H, Peng D L. J. Cryst. Growth, 2009, 311: 1229—1233
[66] Sophie C, Cédric B, Lionel N, Clément S, Pascal L F, Nicolas M. Chem. Mater., 2010, 22: 1340—1349
[67] Cho K S, Seo H R, Lee Y K. Catal. Commun., 2011, 12: 470—474
[68] Seo H R, Cho K S, Lee Y K. Mat. Sci. Eng. B-Solid., 2011, 176: 132—140
[69] Guan Q X, Li W, Zhang M H, Tao K Y. J. Catal., 2009, 263: 1—3
[70] Song L M, Zhang S J, Wei Q W. Catal. Commun., 2011, 12: 1157—1160
[71] Song L M, Zhang S J. Powder Technol., 2011, 208: 713—716
[72] Guan Q X, Li W. J. Catal., 2010, 271 : 413—415
[73] Yang S F, Liang C H, Prins P. J. Catal., 2006, 237: 118—130
[74] Chen J X, Chen Y, Yang Q, Li K L, Yao C C. Catal. Commun., 2010, 11: 571—575
[75] Guan J, Wang Y, Qin M L, Yang Y, Li X, Wang A J. J. Solid State Chem., 2009, 182: 1550—1555
[76] Song L M, Zhang S J, Wei Q W. J. Solid State Chem., 2011, 184: 556—1560
[77] Veen J A R, Hendriks P A J M, Andréa R R, Romers E J G M, Wilson A E. J. Phys. Chem., 1990, 94: 5375—5282
[78] Lee Y K, Oyama S T. Stud. Surf. Sci. Catal., 2006, 159: 357—360
[79] 宋华(Song H), 郭云涛(Guo Y T), 李锋(Li F), 于洪坤(Yu H K). 物理化学学报(Acta Phys. Chim. Sin. ), 2010, 26(9): 2461—2467
[80] 宋华(Song H), 于洪坤(Yu H K), 武显春(Wu X C), 郭云涛(Guo Y T). 催化学报(Chinese J. Catal. ), 2010, 31: 447—453
[81] Tamás I K, Zdenk V, János B N. Catal. Today, 2008, 130: 80—85
[82] Shi G J, Shen J Y. Catal. Commun., 2009, 10: 1693—1696
[83] Sun F X, Wu W C, Wu Z L, Guo J, Wei Z B, Yang Y X, Jiang Z X, Tian F P, Li C. J. Catal., 2004, 228(2): 298—310
[84] Abu I I, Smith K J. J. Catal., 2006, 241: 356—366
[85] Burns A W, Gaudette A F, Bussell M E. J. Catal., 2008, 260: 262—269
[86] Silva V T, Sousa L A, Amorimb R M, Andrini L, Figueroa S J A, Requejo F G, Vicentini F C. J. Catal., 2011, 279: 88—102
[87] Li X, Lu M H, Wang A J, Song C S, Hu Y K. J. Phys. Chem. C, 2008, 112: 16584—16592
[88] Li X, Zhang Y L, Wang A J, Wang Y, Hu Y K. Catal. Commun., 2010, 11: 1129—1132
[89] Wang R, Smith K J. Appl. Catal. A-Gen., 2009, 361: 18—25
[90] Song L M, Li W, Wang G L, Zhang M H, Tao K Y. Catal. Today, 2007, 125: 137, 142
[91] Koranyi T I. Appl. Catal. A-Gen., 2003, 239 : 253—267
[92] Wang K L, Yang B L, Liu Y, Yi C H. Energy & Fuels, 2009, 23: 4209—4214
[93] Egorova M, Prins R. J. Catal., 2004, 224: 278—287
[94] Molina A I, Ceciliab J A, Paweleca B, Fierroa J L G, Castellònb E R, Lòpez A J. Appl. Catal. A-Gen., 2010, 390: 253—263
[95] Cecilia J A, Molina A I, Castellón E R, López A J. J. Phys. Chem. C, 2009, 113: 17032—17044
[96] Kim T W, Kleitz F, Paul B, Ryoo R. J. Am. Chem. Soc., 2005, 127: 7601—7610
[97] Wang R, Smith K J. Appl. Catal. A-Gen., 2010, 380: 149—162
[98] Abu I I, Smith K J. Appl. Catal. A-Gen., 2007, 328: 58—67
[99] Kim J H, Ma X L, Song C S. Energy & Fuels, 2005, 19: 353—364
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[4] 薛宗涵, 马楠, 王炜罡. 大气中的单环芳香族硝基化合物[J]. 化学进展, 2022, 34(9): 2094-2107.
[5] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[6] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[7] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
[8] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[9] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[10] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[11] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[12] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[13] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[14] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[15] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
阅读次数
全文


摘要

Ni2P加氢脱硫催化剂